Sex Hormones as Cognitive Enhancers?

Springer Science and Business Media LLC - Tập 4 - Trang 228-233 - 2019
Francisco Núñez1, María J. Maraver2,3, Lorenza S. Colzato4,1
1Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Dresden, Germany
2Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
3Faculty of Psychology & Research Center for Psychological Science, University of Lisbon, Lisbon, Portugal
4Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany

Tóm tắt

Understanding the differences in the way women and men think has made headway thanks to experiments showing how sex hormones influence cognitive capacities. Masculine and feminine sex hormones (androgens and estrogens, respectively) affect cognition in different ways and may account for some of the gender differences in cognitive abilities, allowing men and women to perform better in certain cognitive tests. In this opinion article, we discuss studies addressing differences in cognitive functions between males and females and the underlying neural substrates, as well as the effects of sex hormone supplementation. Even though some studies on patients receiving exogenous sex hormones showed gender differences that emerge at group levels on a few cognitive tasks, it is not yet clear whether these differences can be partially attributed to hormonal causes. Supplementation of female estrogen can enhance verbal skills, whereas masculine androgen can increase performance in mathematical and visuospatial tasks. Studies of the administration of exogenous sex hormones have allowed further insight into the use of sex hormones as possible cognitive enhancers.

Tài liệu tham khảo

Adler, A., Vescovo, P., Robinson, J. K., & Kritzer, M. F. (1999). Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats. Neuroscience, 89(3), 939–954. Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Developmental Psychology, 47(4), 984–990. Asthana, S. (2003). Estrogen and cognition: The story so far. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(4), M322–M323. Ball, P., Knuppen, R., Haupt, M., & Breuer, H. (1972). Interactions between estrogens and catecholamines. Studies on the methylation of catechol estrogens, catechol amines and other catechols by the catechoI-O-methyltransferase of human liver. Journal of Clinical Endocrinology and Metabolism, 34, 736–746. Baskaran, C., Cunningham, B., Plessow, F., Singhal, V., Woolley, R., Ackerman, K. E., et al. (2017). Estrogen replacement improves verbal memory and executive control in oligo-amenorrheic athletes in a randomized controlled trial. The Journal of Clinical Psychiatry, 78(5), e490. Bayer, J., Gläscher, J., Finsterbusch, J., Schulte, L. H., & Sommer, T. (2018). Linear and inverted u-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nature Communications, 9(1), 1220. Beyenburg, S., Watzka, M., Clusmann, H., Blümcke, I., Bidlingmaier, F., Elger, C. E., & Stoffel-Wagner, B. (2000). Androgen receptor mRNA expression in the human hippocampus. Neuroscience Letters, 294(1), 25–28. Bramen, J. E., Hranilovich, J. A., Dahl, R. E., Chen, J., Rosso, C., Forbes, E. E., Dinov, I. D., Worthman, C. M., & Sowell, E. R. (2012). Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls. PLoS One, 7, e33850. Ciocca, G., Limoncin, E., Carosa, E., Di Sante, S., Gravina, G. L., Mollaioli, D., et al. (2016). Is testosterone a food for the brain? Sexual Medicine Reviews, 4(1), 15–25. Cohen-Kettenis, P. T., van Goozen, S. H. M., Doorn, C. D., & Gooren, L. J. G. (1998). Cognitive ability and cerebral lateralisation in transsexuals. Psychoneuroendocrinology, 23, 631–641. Colzato, L. S. (2017). Tyrosine. In L. S. Colzato (Ed.), Theory-driven approaches to cognitive enhancement. New York: Springer. Colzato, L. S., & Arntz, F. E. (2017). Ritalin. In L. S. Colzato (Ed.), Theory-driven approaches to cognitive enhancement. New York: Springer. Colzato, L. S., & Hommel, B. (2014). Effects of estrogen on higher-order cognitive functions in unstressed human females may depend on individual variation in dopamine baseline levels. Frontiers in Neuroscience, 8, 65. Colzato, L. S., Hertsig, G., van den Wildenberg, W., & Hommel, B. (2010). Estrogen modulates inhibitory control in healthy human females: Evidence from the stop-signal paradigm. Neuroscience, 167, 709–715. Colzato, L. S., Pratt, J., & Hommel, B. (2012). Estrogen modulates inhibition of return in healthy human females. Neuropsychologia, 50, 98–103. Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. Neuroscience & Biobehavioral Reviews, 30(1), 1–23. Finley, S. K., & Kritzer, M. F. (1999). Immunoreactivity for intracellular androgen receptors in identified subpopulations of neurons, astrocytes and oligodendrocytes in primate prefrontal cortex. Journal of Neurobiology, 40(4), 446–457. Frick, K. M., Kim, J., Tuscher, J. J., & Fortress, A. M. (2015). Sex steroid hormones matter for learning and memory: Estrogenic regulation of hippocampal function in male and female rodents. Learning & Memory, 22(9), 472–493. Gao, S., Hendrie, H. C., Hall, K. S., & Hui, S. (1998). The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Archives of General Psychiatry, 55(9), 809–815. Girard, R., Météreau, E., Thomas, J., Pugeat, M., Qu, C., & Dreher, J. C. (2017). Hormone therapy at early post-menopause increases cognitive control-related prefrontal activity. Scientific Reports, 7, 44917. Gleason, C. E., Dowling, N. M., Wharton, W., Manson, J. E., Miller, V. M., Atwood, C. S., et al. (2015). Effects of hormone therapy on cognition and mood in recently postmenopausal women: Findings from the randomized, controlled KEEPS–cognitive and affective study. PLoS Medicine, 12(6), e1001833. Gouchie, C., & Kimura, D. (1991). The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology, 16(4), 323–334. Gurvich, C., Hoy, K., Thomas, N., & Kulkarni, J. (2018). Sex differences and the influence of sex hormones on cognition through adulthood and the aging process. Brain Sciences, 8(9), 163. Hara, Y., Waters, E. M., McEwen, B. S., & Morrison, J. H. (2015). Estrogen effects on cognitive and synaptic health over the life course. Physiological Reviews, 95(3), 785–807. Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710–715. Heil, M., Kavšek, M., Rolke, B., Beste, C., & Jansen, P. (2011). Mental rotation in female fraternal twins: Evidence for intra-uterine hormone transfer? Biological Psychology, 86, 90–93. Hidalgo-Lopez, E., & Pletzer, B. (2017). Interactive effects of dopamine baseline levels and cycle phase on executive functions: The role of progesterone. Frontiers in Neuroscience, 11, 403. Hodis, H. N., Mack, W. J., Shoupe, D., Azen, S. P., Stanczyk, F. Z., Hwang-Levine, J., ... & Henderson, V. W. (2015). Methods and baseline cardiovascular data from the early versus late intervention trial with estradiol testing the menopausal hormone timing hypothesis. Menopause (New York, NY), 22(4), 391. Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373–398. https://doi.org/10.1146/annurev-psych-010213-115057. Hyde, J. S. (2016). Sex and cognition: Gender and cognitive functions. Current Opinion in Neurobiology, 38, 53–56. Janowsky, J. S. (2006). Thinking with your gonads: Testosterone and cognition. Trends in Cognitive Sciences, 10(2), 77–82. Kaufman, A. S., Kaufman, J. C., Liu, X., & Johnson, C. K. (2009). How do educational attainment and gender relate to fluid intelligence, crystallized intelligence, and academic skills at ages 22–90 years? Archives of Clinical Neuropsychology, 24(2), 153–163. Li, R., & Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer’s disease. Frontiers in Neuroendocrinology, 35(3), 385–403. Luine, V. N. (2014). Estradiol and cognitive function: Past, present and future. Hormones and Behavior, 66(4), 602–618. Majeres, R. L. (1997). Sex differences in phonetic processing: Speed of identification of alphabetical sequences. Perceptual and Motor Skills, 85(3_suppl), 1243–1251. Majeres, R. L. (1999). Sex differences in phonological processes: Speeded matching and word reading. Memory & Cognition, 27(2), 246–253. Maki, P. M. (2013). The critical window hypothesis of hormone therapy and cognition: A scientific update on clinical studies. Menopause (New York, NY), 20(6), 695. McCarrey, A. C., An, Y., Kitner-Triolo, M. H., Ferrucci, L., & Resnick, S. M. (2016). Sex differences in cognitive trajectories in clinically normal older adults. Psychology and Aging, 31, 166–175. Miles, C., Green, R., Sanders, G., & Hines, M. (1998). Estrogen and memory in a transsexual population. Hormones and Behavior, 34, 199–208. Miles, C., Green, R., & Hines, M. (2006). Estrogen treatment effects on cognition, memory and mood in male-to-female transsexuals. Hormones and Behavior, 50(5), 708–717. Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65. Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18(1), 37–45. Milne, M. R., Haug, C. A., Ábrahám, I. M., & Kwakowsky, A. (2014). Estradiol modulation of neurotrophin receptor expression in female mouse basal forebrain cholinergic neurons in vivo. Endocrinology, 156(2), 613–626. Nakamura, N., Fujita, H., & Kawata, M. (2002). Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience, 109(3), 473–485. Pletzer, B., Scheuringer, A., & Scherndl, T. (2017). Global-local processing relates to spatial and verbal processing: Implications for sex differences in cognition. Scientific Reports, 7(1), 10575. Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: Metaanalyses of congenital adrenal hyperplasia and digit ratio (2D:4D) studies. Archives of Sexual Behavior, 37, 100–111. Scheiber, C., Reynolds, M. R., Hajovsky, D. B., & Kaufman, A. S. (2015). Gender differences in achievement in a large, nationally representative sample of children and adolescents. Psychology in the Schools, 52(4), 335–348. Scheuringer, A., Wittig, R., & Pletzer, B. (2017). Sex differences in verbal fluency: The role of strategies and instructions. Cognitive Processing, 18(4), 407–417. Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The Women's Health Initiative memory study: A randomized controlled trial. JAMA, 289(20), 2651–2662. Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 1581–1599. Slabbekoorn, D., Van Goozen, S. H., Megens, J., Gooren, L. J., & Cohen-Kettenis, P. T. (1999). Activating effects of cross-sex hormones on cognitive functioning: A study of short-term and long-term hormone effects in transsexuals. Psychoneuroendocrinology, 24(4), 423–447. Tapp, A. L., Maybery, M. T., & Whitehouse, A. J. (2011). Evaluating the twin testosterone transfer hypothesis: A review of the empirical evidence. Hormones and Behavior, 60, 713–722. Tuscher, J. J., Luine, V., Frankfurt, M., & Frick, K. M. (2016). Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. Journal of Neuroscience, 36(5), 1483–1489. van Goozen, S. H. M., Slabbekoorn, D., Gooren, L. J. G., Sanders, G., & Cohen-Kettenis, P. T. (2002). Organizing and activating effects of sex hormones in homosexual transsexuals. Behavioral Neuroscience, 116, 982–988. Vidal, A., Puig, O., Boget, T., & Salamero, M. (2006). Gender differences in cognitive functions and influence of sex hormones. Actas Españolas de Psiquiatría, 34(6), 408–415. Vuoksimaa, E., Kaprio, J., Eriksson, C. J., & Rose, R. J. (2012). Pubertal testosterone predicts mental rotation performance of young adult males. Psychoneuroendocrinology, 37, 1791–1800. Wisniewski, A. B., Prendeville, M. T., & Dobs, A. S. (2005). Handedness, functional cerebral hemispheric lateralization, and cognition in male-to-female transsexuals receiving cross-sex hormone treatment. Archives of Sexual Behavior, 34(2), 167–172. Yang, Y., & Barth, J. M. (2015). Gender differences in STEM undergraduates’ vocational interests: People–thing orientation and goal affordances. Journal of Vocational Behavior, 91, 65–75. Yonker, J. E., Eriksson, E., Nilsson, L. G., & Herlitz, A. (2006). Negative association of testosterone on spatial visualization in 35 to 80 year old men. Cortex, 42, 376–386.