Several closed expressions for the Euler numbers

Springer Science and Business Media LLC - Tập 2015 Số 1 - 2015
Chengzhou Wei1, Feng Qi2
1School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo, Henan, 454010, China
2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028043, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972)

Temme, NM: Special Functions: An Introduction to Classical Functions of Mathematical Physics. A Wiley-Interscience Publication. Wiley, New York (1996). doi: 10.1002/9781118032572

Brent, RP, Harvey, D: Fast computation of Bernoulli, tangent and secant numbers. In: Computational and Analytical Mathematics. Springer Proc. Math. Stat., vol. 50, pp. 127-142. Springer, New York (2013). doi: 10.1007/978-1-4614-7621-4_8

Guo, B-N, Qi, F: Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind. J. Comput. Appl. Math. 272, 251-257 (2014). doi: 10.1016/j.cam.2014.05.018

Guo, B-N, Qi, F: Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers. ResearchGate Technical Report (2015). doi: 10.13140/2.1.3794.8808

Kim, DS, Kim, T, Kim, YH, Lee, SH: Some arithmetic properties of Bernoulli and Euler numbers. Adv. Stud. Contemp. Math. (Kyungshang) 22(4), 467-480 (2012)

Qi, F: Derivatives of tangent function and tangent numbers. Appl. Math. Comput. (2015, in press). arXiv:1202.1205v3

Malenfant, J: Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers (2011). arXiv:1103.1585

Vella, DC: Explicit formulas for Bernoulli and Euler numbers. Integers 8, A01 (2008)

Yakubovich, S: Certain identities, connection and explicit formulas for the Bernoulli, Euler numbers and Riemann zeta-values (2014). arXiv:1406.5345

Bourbaki, N: Functions of a Real Variable, Elementary Theory: Elements of Mathematics. Springer, Berlin (2004). doi: 10.1007/978-3-642-59315-4 ; Translated from the 1976 French original by Philip Spain.

Comtet, L: Advanced Combinatorics: The Art of Finite and Infinite Expansions, revised and enlarged edition. Reidel, Dordrecht (1974)

Qi, F, Zheng, M-M: Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 258, 597-607 (2015). doi: 10.1016/j.amc.2015.02.027

Qi, F, Wei, C-F: Several closed expressions for the Euler numbers. ResearchGate Technical Report (2015). doi: 10.13140/2.1.3474.7688