Set-valued Prešić–Reich type mappings in metric spaces

Satish Shukla1, R. Sen1
1Department of Applied Mathematics, Shri Vaishnav Institute of Technology and Science, Gram Baroli Sanwer Road, Indore, 453331, MP, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aydi, H., Abbas, M., Postolache, M.: Coupled coincidence points for hybrid pair of mappings via mixed monotone property. J. Adv. Math. Stud. 5(1), 118–126 (2012)

Ayd, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 1519, 3234–3242 (2012)

Berinde, M., Berinde, V.: On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326, 772–782 (2007)

Chaipunya, P., Mongkolkeh, C., Sintunavarat, W., Kumam, P.: Fixed point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 14p. (2012). (Article ID 503504)

Cho, S.H., Bae, J.S.: Fixed point theorems for multi-valued maps in cone metric spaces. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-87

Chen, Y.Z.: A Prešić type contractive condition and its applications. Nonlinear Anal. (2009). doi: 10.1016/j.na.2009.03.006

$$\acute{\text{ C}}$$ irić, L.B., Prešić, S.B.: On Prešić type generalisation of Banach contraction principle. Acta Math. Univ. Com. LXXVI(2), 143–147 (2007)

Damjanovic, B., Samet, B., Vetro, C.: Common fixed point theorems for multi-valued maps. Acta Math. Sci. 32, 818–824 (2012)

Du, W.S.: Critical point theorems for nonlinear dynamical systems and their applications. Fixed Point Theory Appl. 2010, 16p. (2010). (Article ID 246382)

Elamrani, M., Mehdaoui, B.: Common fixed point theorems for compatible and weakly compatible mappings. Rev. Colomb. Mat. 34, 25–33 (2000)

Eshaghi, G.M., Baghani, H., Khodaei, H., Ramezani, M.: A generalization of Nadler’s fixed point theorem. J. Nonlinear Sci. Appl. 3(2), 148–151 (2010)

George, R., Reshma, K.P., Rajagopalan, R.: A generalised fixed point theorem of Prešić type in cone metric spaces and application to Morkov process. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-85

Kannan, R.: Some results on fixed point. Bull. Calcutta Math. Soc. 60, 71–76 (1968)

Kannan, R.: Some results on fixed point-II. Am. Math. Mon. 76, 405–408 (1969)

Khan, M.S., Berzig, M., Samet, B.: Some convergence results for iterative sequences of Prešić type and applications. Advances in Difference Equations (2012). doi: 10.1186/1687-1847-2012-38

Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

Nadler Jr, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

Pǎcurar, M.: A multi-step iterative method for approximating common fixed points of Prešić–Rus type operators on metric spaces. Studia Univ. “Babeş-Bolyai” Math. LV(1), 149–162 (2010)

Pǎcurar, M.: Approximating common fixed points of Prešić–Kannan type operators by a multi-step iterative method. An. Şt. Univ. Ovidius Constanţa 17(1), 153–168 (2009)

Prešić, S.B.: Sur la convergence des suites. Comptes. Rendus. de l’Acad. de Paris 260, 3828–3830 (1965)

Prešić, S.B.: Sur une classe dinequations aux differences finite et sur la convergence de certaines suites. Publ. de lInst. Math. Belgrade 5(19), 75–78 (1965)

Radenović, S., Simić, S., Cakić, N., Golubović, Z.: A note on tvs-cone metric fixed point theory. Math. Comput. Model. 54, 2418–2422 (2011)

Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971). MR 45 $$\#$$ 1145

Samet, B., Vetro, C.: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 74, 4260–4268 (2011)

Shatanawi, W., Rajić, Č.V., Radenović, S., Rawashdeh, A.A.: Mizoguchi–Takahashi type theorems in tvs-cone metric spaces. Fixed point Theory Appl. (2012). doi: 10.1186/1687-1812-2012-106

Shukla, S., Sen, R., Radenović, S.: Set-valued Prešić type contraction in metric spaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) (2012, accepted)

Vetro, P.: Common fixed points in cone metric spaces. Rend. Circ. Mat. Palermo 56(2), 464–468 (2007)

Vetro, F.: On approximating curves associated with nonexpansive mappings. Carpathian J. Math. 27(1), 142–147 (2011)

Wardowski, D.: On set-valued contractions of Nadler type in cone metric spaces. Appl. Math. Lett. 24, 275–278 (2011)