Set-valued Prešić–Reich type mappings in metric spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aydi, H., Abbas, M., Postolache, M.: Coupled coincidence points for hybrid pair of mappings via mixed monotone property. J. Adv. Math. Stud. 5(1), 118–126 (2012)
Ayd, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 1519, 3234–3242 (2012)
Berinde, M., Berinde, V.: On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326, 772–782 (2007)
Chaipunya, P., Mongkolkeh, C., Sintunavarat, W., Kumam, P.: Fixed point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 14p. (2012). (Article ID 503504)
Cho, S.H., Bae, J.S.: Fixed point theorems for multi-valued maps in cone metric spaces. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-87
Chen, Y.Z.: A Prešić type contractive condition and its applications. Nonlinear Anal. (2009). doi: 10.1016/j.na.2009.03.006
$$\acute{\text{ C}}$$ irić, L.B., Prešić, S.B.: On Prešić type generalisation of Banach contraction principle. Acta Math. Univ. Com. LXXVI(2), 143–147 (2007)
Damjanovic, B., Samet, B., Vetro, C.: Common fixed point theorems for multi-valued maps. Acta Math. Sci. 32, 818–824 (2012)
Du, W.S.: Critical point theorems for nonlinear dynamical systems and their applications. Fixed Point Theory Appl. 2010, 16p. (2010). (Article ID 246382)
Elamrani, M., Mehdaoui, B.: Common fixed point theorems for compatible and weakly compatible mappings. Rev. Colomb. Mat. 34, 25–33 (2000)
Eshaghi, G.M., Baghani, H., Khodaei, H., Ramezani, M.: A generalization of Nadler’s fixed point theorem. J. Nonlinear Sci. Appl. 3(2), 148–151 (2010)
George, R., Reshma, K.P., Rajagopalan, R.: A generalised fixed point theorem of Prešić type in cone metric spaces and application to Morkov process. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-85
Kannan, R.: Some results on fixed point. Bull. Calcutta Math. Soc. 60, 71–76 (1968)
Khan, M.S., Berzig, M., Samet, B.: Some convergence results for iterative sequences of Prešić type and applications. Advances in Difference Equations (2012). doi: 10.1186/1687-1847-2012-38
Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)
Pǎcurar, M.: A multi-step iterative method for approximating common fixed points of Prešić–Rus type operators on metric spaces. Studia Univ. “Babeş-Bolyai” Math. LV(1), 149–162 (2010)
Pǎcurar, M.: Approximating common fixed points of Prešić–Kannan type operators by a multi-step iterative method. An. Şt. Univ. Ovidius Constanţa 17(1), 153–168 (2009)
Prešić, S.B.: Sur la convergence des suites. Comptes. Rendus. de l’Acad. de Paris 260, 3828–3830 (1965)
Prešić, S.B.: Sur une classe dinequations aux differences finite et sur la convergence de certaines suites. Publ. de lInst. Math. Belgrade 5(19), 75–78 (1965)
Radenović, S., Simić, S., Cakić, N., Golubović, Z.: A note on tvs-cone metric fixed point theory. Math. Comput. Model. 54, 2418–2422 (2011)
Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971). MR 45 $$\#$$ 1145
Samet, B., Vetro, C.: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 74, 4260–4268 (2011)
Shatanawi, W., Rajić, Č.V., Radenović, S., Rawashdeh, A.A.: Mizoguchi–Takahashi type theorems in tvs-cone metric spaces. Fixed point Theory Appl. (2012). doi: 10.1186/1687-1812-2012-106
Shukla, S., Sen, R., Radenović, S.: Set-valued Prešić type contraction in metric spaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) (2012, accepted)
Vetro, P.: Common fixed points in cone metric spaces. Rend. Circ. Mat. Palermo 56(2), 464–468 (2007)
Vetro, F.: On approximating curves associated with nonexpansive mappings. Carpathian J. Math. 27(1), 142–147 (2011)