Set Computation for Nonlinear Control

Springer Science and Business Media LLC - Tập 10 - Trang 1-26 - 2004
Luc Jaulin1, Stefan Ratschan2, Laurent Hardouin1
1LISA, Université, Angers, France, e-mail
2Max-Planck-Institut für Informatik, Saarbrücken, Germany, e-mail

Tóm tắt

This paper proposes a new approach to solve the problem of finding a control sequence for a nonlinear discrete-time system that should satisfy given set-membership specifications on the state and the output vectors. This approach is based on set computation and constraint propagation. Two illustrative examples are provided. The approach is then extended to deal with the robust control problem of nonlinear discrete-time systems.

Tài liệu tham khảo

Barmish, B. R.: New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J. F.: Revising Hull and Box Consistency, in: Proceedings of the International Conference on Logic Programming, Las Cruces, 1999, pp. 230–244. Bertsekas, D. P.: Infinite-Time Reachability of State-Space Regions by Using Feedback Control, IEEE Trans. Automatic Control 17(5) (1972), pp. 604–613. Bertsekas, D. P. and Rhodes, I. B.: On the Minimax Reachability of Target Sets and Target Tubes, Automatica 7(2) (1971), pp. 233–241. Cleary, J. G.: Logical Arithmetic, Future Computing Systems 2(2) (1987), pp. 125–149. Cohen, G., Moller, P., Quadrat, J. P., and Viot, M.: Algebraic Tools for the Performance Evaluation of Discrete Event Systems, IEEE Proceedings: Special Issue on Discrete Event Systems 77(1) (1989), pp. 39–58. Dechter, R. and Pearl, J.: Tree-Clustering for Constraint Networks, Artificial Intelligence 38(3) (1989), pp. 353–366. Dorato, P., Tempo, R., and Muscato, G.: Bibliography on Robust Control, Automatica 29(1) (1993), pp. 201–213. Durieu, C., Polyak, B., and Walter, E.: Ellipsoidal State Outer-Bounding for MIMO Systems via Analytical Techniques, in: Proceedings of the IMACS—IEEE-SMC CESA'96 Symposium on Modelling and Simulation, Vol. 2, Lille, France, 1996, pp. 843–848. Ebbinghaus, H.-D., Flum, J., and Thomas, W.: Mathematical Logic, Springer Verlag, 1984. Gondran, M. and Minoux, M.: Graphes et Algorithmes, Eyrolles, Paris, 3e édition, 1995. Jaulin, L., Kieffer, M., Braems, I., and Walter, E.: Guaranteed Nonlinear Estimation Using Constraint Propagation on Sets, International Journal of Control 74(18) (2001), pp. 1772–1782. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. Jaulin, L. and Walter, E.: Global Numerical Approach to Nonlinear Discrete-Time Control, IEEE Transactions on Automatic Control 42(6) (1997), pp. 872–875. Kurzhanski, A. and Valyi, I.: Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997. Mackworth, A. K.: Consistency in Networks of Relations, Artificial Intelligence 8(1) (1977), pp. 99–118. Malan, S. A., Milanese, M., and Taragna, M.: Robust Tuning for PID Controllers with Multiple Performance Specifications, in: Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, 1994, pp. 2684–2689. Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M.: Constrained Model Predictive Control: Stability and Optimality. Survey Paper. Automatica 36 (2000), pp. 789–814. Menguy, E., Boimond, J. L., and Hardouin, L.: Just in Time Control of Linear System in Dioid: Cases of an Update of Reference Input and Uncontrollable Input, IEEE Transactions on Automatic Control 45(11) (2000), pp. 2155–2159. Milanese, M., Norton, J., Piet-Lahanier, H., and Walter, E. (eds): Bounding Approaches to System Identification, Plenum Press, New York, 1996. Montanari, U. and Rossi, F.: Constraint Relaxation May Be Perfect, Artificial Intelligence 48(2) (1991), pp. 143–170. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979. Murata, T.: Petri Nets: Properties, Analysis, and Applications, Proceedings of the IEEE 77(4) (1989), pp. 541–580. Norton, J. P.: Roles for Deterministic Bounding in Environmental Modeling, Ecological Modelling 86 (1996), pp. 157–161. Ratschan, S.: Approximate Quantified Constraint Solving (AQCS), 2000, http://www.risc.uni-linz.ac.at/research/software/AQCS. Ratschan, S.: Approximate Quantified Constraint Solving by Cylindrical Box Decomposition, Reliable Computing 8(1) (2002), pp. 21–42. Walter, E. and Piet-Lahanier, H.: Exact Recursive Polyhedral Description of the Feasible Parameter Set for Bounded-Error Models, IEEE Transactions on Automatic Control 34(8) (1989), pp. 911–915. Walter, E. and Pronzato, L.: Identification of Parametric Models from Experimental Data, Springer-Verlag, London, 1997.