Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress
Tài liệu tham khảo
Vagnozzi, 2013, Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart, Sci. Transl. Med., 5, 10.1126/scitranslmed.3006479
Yellon, 2007, Myocardial reperfusion injury, N. Engl. J. Med., 357, 1121, 10.1056/NEJMra071667
Davidson, 2019, Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week, J. Am. Coll. Cardiol., 73, 89, 10.1016/j.jacc.2018.09.086
Cadenas, 2018, ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection, Free Radic. Biol. Med., 117, 76, 10.1016/j.freeradbiomed.2018.01.024
Ashraf, 2014, A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury, Cell Commun. Signal., 12, 6, 10.1186/1478-811X-12-6
Torres, 2003, Mitogen-activated protein kinase pathways in redox signaling, Front. Biosci., 8, d369, 10.2741/999
Sueishi, 2014, Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species, J. Clin. Biochem. Nutr., 54, 67, 10.3164/jcbn.13-53
Ramirez-Camacho, 2018, Cardioprotective strategies preserve the stability of respiratory chain supercomplexes and reduce oxidative stress in reperfused ischemic hearts, Free Radic. Biol. Med., 129, 407, 10.1016/j.freeradbiomed.2018.09.047
Michelucci, 2017, Antioxidant treatment reduces formation of structural cores and improves muscle function in RYR1(Y522S/WT) mice, Oxid. Med. Cell Longev., 10.1155/2017/6792694
Sandhir, 2017, N-acetyl-l-cysteine prevents bile duct ligation induced renal injury by modulating oxidative stress, Indian J. Clin. Biochem., 32, 411, 10.1007/s12291-016-0627-0
Carpi, 2009, The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury, Biochim. Biophys. Acta, 1787, 774, 10.1016/j.bbabio.2009.04.001
Siti, 2015, The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review), Vasc. Pharmacol., 71, 40, 10.1016/j.vph.2015.03.005
Lee, 2010, Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies, Science, 327, 1223, 10.1126/science.1182228
Bae, 2013, Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage, Cell Metabol., 17, 73, 10.1016/j.cmet.2012.12.002
Sun, 2020, The emerging role of Sestrin2 in cell metabolism, and cardiovascular and age-related diseases, Aging Dis., 11, 154, 10.14336/AD.2019.0320
Liu, 2020, Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways, Ageing Res. Rev., 62, 101096, 10.1016/j.arr.2020.101096
Quan, 2018, Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1alpha pathway, J. Mol. Cell. Cardiol., 115, 170, 10.1016/j.yjmcc.2018.01.005
Zhang, 2018, Sestrin2 aggravates oxidative stress of neurons by decreasing the expression of Nrf2, Eur. Rev. Med. Pharmacol. Sci., 22, 3493
Li, 2016, Sestrin2 silencing exacerbates cerebral ischemia/reperfusion injury by decreasing mitochondrial biogenesis through the AMPK/PGC-1alpha pathway in rats, Sci. Rep., 6, 30272, 10.1038/srep30272
Morrison, 2011, Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice, Am. J. Physiol. Heart Circ. Physiol., 301, H895, 10.1152/ajpheart.00137.2011
Quan, 2017, Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism, Faseb. J., 31, 4153, 10.1096/fj.201700063R
Li, 2019, Dichloroacetate ameliorates cardiac dysfunction caused by ischemic insults through AMPK signal pathway-not only shifts metabolism, Toxicol. Sci., 167, 604, 10.1093/toxsci/kfy272
Guo, 2009, Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction, J. Mol. Cell. Cardiol., 47, 228, 10.1016/j.yjmcc.2009.03.018
Hua, 2011, Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy, Basic Res. Cardiol., 106, 1173, 10.1007/s00395-011-0222-8
Wang, 2016, GsMTx4-D is a cardioprotectant against myocardial infarction during ischemia and reperfusion, J. Mol. Cell. Cardiol., 98, 83, 10.1016/j.yjmcc.2016.07.005
Liao, 2007, Isolation, culture, and functional analysis of adult mouse cardiomyocytes, Methods Mol. Med., 139, 251, 10.1007/978-1-59745-571-8_16
Roe, 2013, Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis, Am. J. Physiol. Heart Circ. Physiol., 304, H828, 10.1152/ajpheart.00752.2012
Zhao, 2009, Deficiency in TLR4 signal transduction ameliorates cardiac injury and cardiomyocyte contractile dysfunction during ischemia, J. Cell Mol. Med., 13, 1513, 10.1111/j.1582-4934.2009.00798.x
Morrison, 2015, Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart, Faseb. J., 29, 408, 10.1096/fj.14-258814
Coven, 2003, Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise, Am. J. Physiol. Endocrinol. Metab., 285, E629, 10.1152/ajpendo.00171.2003
Wang, 2017, Mitochondrial PKC-epsilon deficiency promotes I/R-mediated myocardial injury via GSK3beta-dependent mitochondrial permeability transition pore opening, J. Cell Mol. Med., 21, 2009, 10.1111/jcmm.13121
Lu, 2019, AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases, Biosci. Rep., 39, 10.1042/BSR20181995
Li, 2019, AMPK: a therapeutic target of heart failure-not only metabolism regulation, Biosci. Rep., 39, 10.1042/BSR20181767
Hu, 2019, The cardioprotective effects of carvedilol on ischemia and reperfusion injury by AMPK signaling pathway, Biomed. Pharmacother., 117, 109106, 10.1016/j.biopha.2019.109106
Sumandea, 2011, Redox signaling and cardiac sarcomeres, J. Biol. Chem., 286, 9921, 10.1074/jbc.R110.175489
Zorov, 2014, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909, 10.1152/physrev.00026.2013
Chouchani, 2014, Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431, 10.1038/nature13909
Andrienko, 2017, The role of succinate and ROS in reperfusion injury - a critical appraisal, J. Mol. Cell. Cardiol., 110, 1, 10.1016/j.yjmcc.2017.06.016
Bates, 2014, Myocardial energetics and ubiquinol in diastolic heart failure, Nurs. Health Sci., 16, 428, 10.1111/nhs.12168
Wang, 2016, Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice, J. Mol. Med. (Berl.), 94, 1229, 10.1007/s00109-016-1449-5
Fan, 2019, Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy, DNA Cell Biol., 38, 10, 10.1089/dna.2018.4348
Lambeth, 2004, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol., 4, 181, 10.1038/nri1312
Zaha, 2016, AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia, J. Mol. Cell. Cardiol., 91, 104, 10.1016/j.yjmcc.2015.12.032
Pujol-Carrion, 2017, Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast, Free Radic. Biol. Med., 103, 107, 10.1016/j.freeradbiomed.2016.12.023
Yu, 2019, Alpha-naphthoflavone induces apoptosis through endoplasmic reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells, Neurotoxicology, 71, 39, 10.1016/j.neuro.2018.11.011
Chen, 2018, Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-kappaB pathway, Metabolism, 83, 256, 10.1016/j.metabol.2018.03.004
Gu, 2018, AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing, Ageing Res. Rev., 47, 168, 10.1016/j.arr.2018.08.002
Qi, 2009, Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion, J. Clin. Invest., 119, 3807, 10.1172/JCI39738
Kaiser, 2005, Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo, J. Biol. Chem., 280, 32602, 10.1074/jbc.M500684200
Li, 2005, AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart, Circ. Res., 97, 872, 10.1161/01.RES.0000187458.77026.10
Pelletier, 2005, Adenosine 5'-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes, Endocrinology, 146, 2285, 10.1210/en.2004-1565
Jaswal, 2007, Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization, Am. J. Physiol. Heart Circ. Physiol., 293, H1107, 10.1152/ajpheart.00455.2007
Jaswal, 2007, p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase, Am. J. Physiol. Heart Circ. Physiol., 292, H1978, 10.1152/ajpheart.01121.2006
Jacquet, 2007, The relationship between p38 mitogen-activated protein kinase and AMP-activated protein kinase during myocardial ischemia, Cardiovasc. Res., 76, 465, 10.1016/j.cardiores.2007.08.001
Hernandez, 2011, A novel cardioprotective p38-MAPK/mTOR pathway, Exp. Cell Res., 317, 2938, 10.1016/j.yexcr.2011.09.011
Li, 2019, Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury, Cardiovasc. Res., 115, 1646, 10.1093/cvr/cvz037
Liberale, 2020, Sirtuin 5 promotes arterial thrombosis by blunting the fibrinolytic system, Cardiovasc. Res.
Rhee, 2015, The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1, Free Radic. Biol. Med., 88, 205, 10.1016/j.freeradbiomed.2015.06.007
Essler, 2009, Role of sestrin2 in peroxide signaling in macrophages, FEBS Lett., 583, 3531, 10.1016/j.febslet.2009.10.017