Session-aware news recommendations using random walks on time-evolving heterogeneous information networks

Panagiotis Symeonidis1, Lidija Kirjackaja2, Markus Zanker2
1Free Univ. of Bozen-Bolzano, Bolzano, Italy
2Free University of Bozen-Bolzano, Bolzano, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

Castells, P., Hurley, N., Vargas, S.: Novelty and diversity in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, Chapter 26, 2nd edn. Springer, Boston (2015)

Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th International Conference on World Wide Web, pp. 271–280. ACM (2007)

de Souza Pereira Moreira, G., Ferreira, F., da Cunha, A.M.: News session-based recommendations using deep neural networks. In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pp. 15–23. ACM (2018)

Epure, E.V., Kille, B., Ingvaldsen, J.E., Deneckere, R., Salinesi, C., Albayrak, S.: Recommending personalized news in short user sessions. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 121–129. ACM (2017)

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., Huber, A.: Offline and online evaluation of news recommender systems at swissinfo.ch. In: Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14, pp. 169–176. ACM, New York (2014). https://doi.org/10.1145/2645710.2645745

Haveliwala, T.: Topic sensitive page rank. In: World Wide Web Conference(WWW). Honolulu, Hawaii (2002)

Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations (2017). arXiv preprint arXiv:1706.03847

Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. CoRR (2015). arXiv:1511.06939

Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood for session-based recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pp. 306–310. ACM, New York (2017). https://doi.org/10.1145/3109859.3109872

Jannach, D., Lerche, L., Jugovac, M.: Adaptation and evaluation of recommendations for short-term shopping goals. In: Proceedings of the Ninth ACM Conference on Recommender Systems, RecSys ’15. ACM, New York (2017)

Jannach, D., Lerche, L., Zanker, M.: Recommending based on implicit feedback. In: Social Information Access, pp. 510–569. Springer (2018)

Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’2002), pp. 538–543. Edmonton, Canada (2002)

Karimi, M., Jannach, D., Jugovac, M.: News recommender systems-survey and roads ahead. Inf. Process. Manag. 54(6), 1203–1227 (2018)

Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Data Sets. Cambridge University Press, Cambridge (2019)

Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)

Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003). https://doi.org/10.1109/MIC.2003.1167344

Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 31–40. ACM (2010)

Lommatzsch, A., Kille, B., Albayrak, S.: Incorporating context and trends in news recommender systems. In: Proceedings of the International Conference on Web Intelligence, pp. 1062–1068. ACM (2017)

Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algorithms. arXiv preprint arXiv:1803.09587 (2018)

Ludmann, C.: Recommending news articles in the clef news recommendation evaluation lab with the data stream management system odysseus. In: 8th International Conference of the CLEF Initiative, Dublin, Ireland. CEUR Workshop Proceedings (2017)

Moreira, P., Jannach, D., da Cunha, A.M.: Contextual hybrid session-based news recommendation with recurrent neural networks (2019). arXiv preprint arXiv:1904.10367

Page, L., Brin, S.: The pagerank citation ranking: bringing order to the web. In: World Wide Web Conference (WWW) (1998)

Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pp. 130–137. ACM, New York (2017). https://doi.org/10.1145/3109859.3109896

Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems. ACM Comput. Surv. (CSUR) 51(4), 66 (2018)

Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 811–820. ACM, New York (2010)

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering on netnews. In: Proceedings of the Computer Supported Collaborative Work Conference, pp. 175–186 (1994)

Sarwar, B., Karypis, G., Konstan J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web (WWW’01), pp. 285–295. New York (2001)

Smyth, B., McClave, P.: Similarity vs. diversity. In: Proceedings of the 4th International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development, pp. 347–361. London (2001)

Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., Tang, J.: Session-based social recommendation via dynamic graph attention networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 555–563. ACM (2019)

Trevisiol, M., Aiello, L.M., Schifanella, R., Jaimes, A.: Cold-start news recommendation with domain-dependent browse graph. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 81–88. ACM (2014)

Vinagre, J., Jorge, A.M., Gama, J.: Evaluation of recommender systems in streaming environments. In: Workshop on Recommender Systems Evaluation: Dimensions and Design (REDD 2014), held in conjunction with RecSys 2014 (2014)

Yizhou, S., Jiawei, H., Xifeng, Y., Philip S., Y., Tianyi, W.: Pathsim: Meta path-based top-k similarity search in heterogenuos information networks. In: Proceedings of the VLDB Endowment (VLDB’2011). Seattle, Washigton (2011)

Zeng, C., Wang, Q., Mokhtari, S., Li, T.: Online context-aware recommendation with time varying multi-armed bandit. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2025–2034. ACM (2016)