Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

Molecular Autism - Tập 5 - Trang 1-10 - 2014
Hannah Steeb1, Jordan M Ramsey1, Paul C Guest1, Pawel Stocki1, Jason D Cooper1, Hassan Rahmoune1, Erin Ingudomnukul2, Bonnie Auyeung2, Liliana Ruta3, Simon Baron-Cohen2, Sabine Bahn1,4
1Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
3Division of Child Neurology and Psychiatry, Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
4Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands

Tóm tắt

The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches.

Tài liệu tham khảo

American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders IV. 1994, Washington DC: American Psychiatric Press Inc, ISBN-10: 0890420262 Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE, Brayne C: Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry. 2009, 194: 500-509. 10.1192/bjp.bp.108.059345. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T: Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet. 2006, 368: 210-215. 10.1016/S0140-6736(06)69041-7. Woodbury-Smith MR, Volkmar FR: Asperger syndrome. Eur Child Adolesc Psychiatry. 2009, 18: 2-11. 10.1007/s00787-008-0701-0. Mattila ML, Kielinen M, Jussila K, Linna SL, Bloigu R, Ebeling H, Moilanen I: An epidemiological and diagnostic study of Asperger syndrome according to four sets of diagnostic criteria. J Am Acad Child Adolesc Psychiatry. 2007, 46: 636-646. 10.1097/chi.0b013e318033ff42. Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E, Ruta L, Kent L, Spain M, Baron-Cohen S, Bahn S: Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry. 2011, 16: 1213-1220. 10.1038/mp.2010.102. Ramsey JM, Schwarz E, Guest PC, van Beveren NJ, Leweke FM, Rothermundt M, Bogerts B, Steiner J, Ruta L, Baron-Cohen S, Bahn S: Molecular sex differences in human serum. PLoS One. 2012, 7: e51504-10.1371/journal.pone.0051504. Venkat A, Jauch E, Russell WS, Crist CR, Farrell R: Care of the patient with an autism spectrum disorder by the general physician. Postgrad Med J. 2012, 88: 472-481. 10.1136/postgradmedj-2011-130727. Levin Y, Hradetzky E, Bahn S: Quantification of proteins using data-independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics. 2011, 11: 3273-3287. 10.1002/pmic.201000661. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E: The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001, 31: 5-17. 10.1023/A:1005653411471. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, Rothermundt M, Bogerts B, Koethe D, Kranaster L, Ohrmann P, Suslow T, McAllister G, Spain M, Barnes A, van Beveren NJ, Baron-Cohen S, Steiner J, Torrey FE, Yolken RH, Bahn S: Identification of a biological signature for schizophrenia in serum. Mol Psychiatry. 2012, 17: 494-502. 10.1038/mp.2011.42. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ: Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009, 9: 1696-1719. 10.1002/pmic.200800564. Neubert H, Bonnert TP, Rumpel K, Hunt BT, Henle ES, James IT: Label-free detection of differential protein expression by LC/MALDI mass spectrometry. J Proteome Res. 2008, 7: 2270-2279. 10.1021/pr700705u. Martins-de-Souza D, Alsaif M, Ernst A, Harris LW, Aerts N, Lenaerts I, Peeters PJ, Amess B, Rahmoune H, Bahn S, Guest PC: The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia. BMC research notes. 2012, 5: 146-10.1186/1756-0500-5-146. Chang CY, Picotti P, Hüttenhain R, Heinzelmann-Schwarz V, Jovanovic M, Aebersold R, Vitek O: Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol Cell Proteomics. 2012, 11 (4): M111.014662-10.1074/mcp.M111.014662. [Epub21 Dec 2011]. Ingudomnukul E, Baron-Cohen S, Wheelwright S, Knickmeyer R: Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm Behav. 2007, 51: 597-604. 10.1016/j.yhbeh.2007.02.001. Ye H, Liu J, Wu JY: Cell adhesion molecules and their involvement in autism spectrum disorder. Neurosignals. 2010, 18: 62-71. 10.1159/000322543. Richdale AL, Prior MR: Urinary cortisol circadian rhythm in a group of high-functioning children with autism. J Autism Dev Disord. 1992, 22: 433-447. 10.1007/BF01048245. Jyonouchi H, Sun S, Le H: Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol. 2001, 120: 170-179. 10.1016/S0165-5728(01)00421-0. Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N, Narita M: Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev. 2004, 26: 292-295. 10.1016/S0387-7604(03)00168-2. Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S, Matsumoto K, Tsuchiya KJ, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Mori N: Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One. 2011, 6: e20470-10.1371/journal.pone.0020470. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J: Associations of impaired behaviours with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol. 2011, 232: 196-199. 10.1016/j.jneuroim.2010.10.025. Heuer L, Ashwood P, Schauer J, Goines P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J: Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res. 2008, 1: 275-283. 10.1002/aur.42. Hergüner S, Keleşoğlu FM, Tanıdır C, Cöpür M: Ferritin and iron levels in children with autistic disorder. Eur J Pediatr. 2012, 171: 143-146. 10.1007/s00431-011-1506-6. Iwata K, Matsuzaki H, Miyachi T, Shimmura C, Suda S, Tsuchiya KJ, Matsumoto K, Suzuki K, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Sato K, Mori N: Investigation of the serum levels of anterior pituitary hormones in male children with autism. Mol Autism. 2011, 2: 16-10.1186/2040-2392-2-16. doi:10.1186/2040-2392-2-16 Tierney E, Bukelis I, Thompson RE, Ahmed K, Aneja A, Kratz L, Kelley RI: Abnormalities of cholesterol metabolism in autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. 2006, 141B: 666-668. 10.1002/ajmg.b.30368. Moses L, Katz N, Weizman A: Metabolic profiles in adults with autism spectrum disorder and intellectual disabilities. Eur Psychiatry. 2013, 10.1016/j.eurpsy.2013.05.005. [Epub ahead of print] Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC: Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med. 2012, 16: 1184-1195. 10.1111/j.1582-4934.2012.01543.x. Aneja A, Tierney E: Autism: the role of cholesterol in treatment. Int Rev Psychiatry. 2008, 20: 165-170. 10.1080/09540260801889062. Palomba S, Marotta R, Di Cello A, Russo T, Falbo A, Orio F, Tolino A, Zullo F, Esposito R, La Sala GB: Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol (Oxf). 2012, 77: 898-904. 10.1111/j.1365-2265.2012.04443.x. Havel PJ: Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol. 2002, 13: 51-59. 10.1097/00041433-200202000-00008. Hodoğlugil U, Williamson DW, Yu Y, Farrer LA, Mahley RW: Glucuronic acid epimerase is associated with plasma triglyceride and high-density lipoprotein cholesterol levels in Turks. Ann Hum Genet. 2011, 75: 398-417. 10.1111/j.1469-1809.2011.00644.x. Choi JW, Liu H, Mukherjee R, Yun JW: Downregulation of fetuin-B and zinc-α2-glycoprotein is linked to impaired fatty acid metabolism in liver cells. Cell Physiol Biochem. 2012, 30: 295-306. 10.1159/000339065. Bonnet F, Cephise FL, Gautier A, Dubois S, Massart C, Camara A, Larifla L, Balkau B, Ducluzeau PH: Role of sex steroids, intrahepatic fat and liver enzymes in the association between SHBG and metabolic features. Clin Endocrinol (Oxf). 2012, 79: 517-522. [Epub ahead of print] Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA: Sex hormone-binding globulin: anatomy and physiology of a new regulatory system. J Steroid Biochem Mol Biol. 1991, 40: 813-820. 10.1016/0960-0760(91)90307-Q. Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G: Fetal testosterone and autistic traits. Br J Psychol. 2009, 100: 1-22. 10.1348/000712608X311731. Schooling CM, Au Yeung SL, Freeman G, Cowling BJ: The effect of statins on testosterone in men and women, a systematic review and meta-analysis of randomized controlled trials. BMC Med. 2013, 11: 57-10.1186/1741-7015-11-57. Sathyapalan T, Kilpatrick ES, Coady AM, Atkin SL: The effect of atorvastatin in patients with polycystic ovary syndrome: a randomized double-blind placebo-controlled study. J Clin Endocrinol Metab. 2009, 94: 103-108. 10.1210/jc.2008-1750. Banaszewska B, Pawelczyk L, Spaczynski RZ, Dziura J, Duleba AJ: Effects of simvastatin and oral contraceptive agent on polycystic ovary syndrome: prospective, randomised, crossover trial. J Clin Endocrinol Metab. 2007, 92: 456-461. 10.1210/jc.2006-1988. Epub 2006 Nov 14 Ghanizadeh A: May lovastatin target both autism and epilepsy? A novel hypothesized treatment. Epilepsy Behav. 2011, 20: 422-10.1016/j.yebeh.2010.12.027. Hwang KR, Choi YM, Kim JJ, Chae SJ, Park KE, Jeon HW, Ku SY, Kim SH, Kim JG, Moon SY: Effects of insulin-sensitizing agents and insulin resistance in women with polycystic ovary syndrome. Clin Exp Reprod Med. 2013, 40: 100-105. 10.5653/cerm.2013.40.2.100. Chromogranin A, Duque M, Modlin IM, Gupta A, Saif MW: Biomarkers in neuroendocrine tumors. JOP. 2013, 14: 372-376. Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O: Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells. Biochem Biophys Res Commun. 1997, 239: 412-417. 10.1006/bbrc.1997.7480. Chu TM: Prostate cancer-associated markers. Immunol Ser. 1990, 53: 339-356. Janssens V, Goris J: Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001, 353: 417-439. 10.1042/0264-6021:3530417. Dastidar SG, Narayanan S, Stifani S, D’Mello SR: Transducin-like enhancer of Split-1 (TLE1) combines with Forkhead box protein G1 (FoxG1) to promote neuronal survival. J Biol Chem. 2012, 287: 14749-14759. 10.1074/jbc.M111.328336. Hong SW, Jin DH, Shin JS, Moon JH, Na YS, Jung KA, Kim SM, Kim JC, Kim KP, Hong YS, Lee JL, Choi EK, Lee JS, Kim TW: Ring finger protein 149 is an E3 ubiquitin ligase active on wild-type v-Raf murine sarcoma viral oncogene homolog B1 (BRAF). J Biol Chem. 2012, 287: 24017-24025. 10.1074/jbc.M111.319822. Smits P, Bolton AD, Funari V, Hong M, Boyden ED, Lu L, Manning DK, Dwyer ND, Moran JL, Prysak M, Merriman B, Nelson SF, Bonafé L, Superti-Furga A, Ikegawa S, Krakow D, Cohn DH, Kirchhausen T, Warman ML, Beier DR: Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210. N Engl J Med. 2010, 362: 206-216. 10.1056/NEJMoa0900158. Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, Torres AR: Brief report: immunoglobulin A deficiency in a subset of autistic subjects. J Autism Dev Disord. 1997, 27: 187-192. 10.1023/A:1025895925178. Dalkowski A, Schuppan D, Orfanos CE, Zouboulis CC: Increased expression of tenascin C by keloids in vivo and in vitro. Br J Dermatol. 1999, 141: 50-56. 10.1046/j.1365-2133.1999.02920.x. Kelly S, Pak C, Garshasbi M, Kuss A, Corbett AH, Moberg K: New kid on the ID block: neural functions of the Nab2/ZC3H14 class of Cys3His tandem zinc-finger polyadenosine RNA binding proteins. RNA Biol. 2012, 9: 555-562. 10.4161/rna.20187. Swinehart WE, Henderson JC, Jackman JE: Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. RNA. 2013, 19: 1137-1146. 10.1261/rna.039651.113. Li X, Liu B, Ji CN, Kang Y, Mao Y: Cloning and expression of ARMC3_v2, a novel splicing variant of the human ARMC3 gene. Genetika. 2006, 42: 999-1003. Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism. Neuropsychobiology. 2002, 45: 1-6. Kameno Y, Iwata K, Matsuzaki H, Miyachi T, Tsuchiya KJ, Matsumoto K, Iwata Y, Suzuki K, Nakamura K, Maekawa M, Tsujii M, Sugiyama T, Mori N: Serum levels of soluble platelet endothelial cell adhesion molecule-1 and vascular cell adhesion molecule-1 are decreased in subjects with autism spectrum disorder. Mol Autism. 2013, 4: 19-10.1186/2040-2392-4-19. van den Hengel LG, Versteeg HH: Tissue factor signalling: a multi-faceted function in biological processes. Front Biosci (Schol Ed). 2011, 3: 1500-1510. Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R: Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers. 2011, 16: 289-301. 10.3109/1354750X.2011.561366. Singh VK: Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol. 1996, 66: 143-145. 10.1016/0165-5728(96)00014-8. Taliou A, Zintzaras E, Lykouras L, Francis K: An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther. 2013, 35: 592-602. 10.1016/j.clinthera.2013.04.006. Asadabadi M, Mohammadi MR, Ghanizadeh A, Modabbernia A, Ashrafi M, Hassanzadeh E, Forghani S, Akhondzadeh S: Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 2013, 225: 51-59. 10.1007/s00213-012-2796-8. Gosselet FP, Magnaldo T, Culerrier RM, Sarasin A, Ehrhart JC: BMP2 and BMP6 control p57(Kip2) expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cell Signal. 2007, 19: 731-739. 10.1016/j.cellsig.2006.09.006. Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW: Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem. 2011, 286: 11569-11578. 10.1074/jbc.M110.201442. Lai MC, Lombardo MV, Pasco G, Ruigrok AN, Wheelwright SJ, Sadek SA, Chakrabarti B, Baron-Cohen S, MRC AIMS Consortium: A behavioural comparison of male and female adults with high functioning autism spectrum conditions. PLoS One. 2011, 6: e20835-10.1371/journal.pone.0020835. Lai MC, Lombardo MV, Suckling J, Ruigrok AN, Chakrabarti B, Ecker C, Deoni SC, Craig MC, Murphy DG, Bullmore ET, Baron-Cohen S, MRC AIMS Consortium: Biological sex affects the neurobiology of autism. Brain. 2013, 136: 2799-2815. 10.1093/brain/awt216. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R: Why are autism spectrum conditions more prevalent in males?. PLoS Biol. 2011, 9: e1001081-10.1371/journal.pbio.1001081.