Mức protein carbonyl huyết thanh, một dấu ấn của stress oxy hóa, có liên quan đến tình trạng quá tải dịch, xác dinh dưỡng và tỷ lệ tử vong ở bệnh nhân lọc máu

BMC Nephrology - Tập 21 - Trang 1-11 - 2020
Young Rim Song1,2,3, Jwa-Kyung Kim1,2, Hyung-Seok Lee1,2, Sung Gyun Kim1,2, Eun-Kyoung Choi3,4
1Division of Nephrology, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
2Hallym University Kidney Research Institute, Anyang, Republic of Korea
3Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
4Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea

Tóm tắt

Stress oxy hóa gia tăng ở giai đoạn cuối của bệnh thận được coi là một trong những cơ chế quan trọng trong xơ vữa động mạch và suy cơ. Tuy nhiên, các nghiên cứu kiểm tra ý nghĩa lâm sàng của stress oxy hóa qua việc đo lường trực tiếp các dấu hiệu này và mối liên hệ của nó với tình trạng thể tích và chứng suy cơ còn hạn chế. Một nghiên cứu cắt ngang theo dõi đã được thực hiện trên các bệnh nhân lọc máu (HD) ổn định và mức độ protein carbonyl huyết thanh đã được đo lường như một dấu ấn của stress oxy hóa. Ngoài ra, phân tích thành phần cơ thể đa tần số, sức mạnh cầm tay (HGS) và các đánh giá dinh dưỡng đã được thực hiện tại thời điểm bắt đầu. Tám mươi tám bệnh nhân đang lọc máu đã được đưa vào nghiên cứu và 30 (34,1%) bệnh nhân đã tử vong trong thời gian theo dõi trung bình 5,2 năm. Tuổi trung bình của bệnh nhân là 60,6 ± 13,5 năm, và thời gian điều trị lọc máu trung bình là 50,8 ± 41,3 tháng. Tổng cộng, 16 bệnh nhân (18,2%) bị quá tải nước, 49 (55,7%) có HGS thấp và 36 (40,9%) có khối lượng cơ thấp. Mức protein carbonyl huyết thanh có liên quan đến mức albumin, prealbumin và transferrin huyết thanh, tình trạng hydrat hóa và HGS thấp. Tình trạng quá tải nước (tỷ lệ odds [OR] 7,01, 95% CI 1,77–27,79, p = 0,006), prealbumin (OR 0,91, 95% CI 0,83–0,99, p = 0,030), đánh giá toàn cầu chủ quan (OR 3,52, 95% CI 1,08–11,46, p = 0,037) và chứng suy cơ (OR 3,41, 95% CI 1,02–11,32, p = 0,046) có mối tương quan đáng kể với mức tăng protein carbonyl huyết thanh. Phân tích hồi quy đa biến cho thấy các mức protein carbonyl huyết thanh (tỷ lệ rủi ro [HR] 2,37, 95% CI 1,02–5,55, p = 0,036), albumin (HR 0,17, 95% CI 0,06–0,46, p = 0,003), prealbumin (HR 0,86, 95% CI 0,80–0,92, p = 0,001), quá tải nước (HR 2,31, 95% CI 1,26–8,71, p = 0,015) và chứng suy cơ (HR 2,72, 95% CI 1,11–6,63, p = 0,028) là những yếu tố quyết định độc lập của tỷ lệ tử vong do mọi nguyên nhân. Mức protein carbonyl huyết thanh có liên quan đáng kể đến tình trạng quá tải nước, tình trạng dinh dưỡng và chứng suy cơ, và có thể là một yếu tố tiên đoán mới của tỷ lệ tử vong ở các bệnh nhân đang tiến hành lọc máu.

Từ khóa

#stress oxy hóa #protein carbonyl #quá tải nước #suy cơ #lọc máu #tỷ lệ tử vong

Tài liệu tham khảo

McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, Klag MJ, Mailloux LU, Manske CL, Meyer KB, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation task force on cardiovascular disease. Am J Kidney Dis. 1998;32(5):853–906. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65(3):1009–16. Morena M, Cristol JP, Senecal L, Leray-Moragues H, Krieter D, Canaud B. Oxidative stress in hemodialysis patients: is NADPH oxidase complex the culprit? Kidney Int Suppl. 2002;80:109–14. Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol Dial Transplant. 2007;22(Suppl 5):v20–36. Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS. Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int. 2000;58(1):353–62. Stenvinkel P, Heimburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, Jogestrand T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55(5):1899–911. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38. Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative stress in hemodialysis patients: a review of the literature. Oxidative Med Cell Longev. 2017;2017:3081856. Himmelfarb J. Relevance of oxidative pathways in the pathophysiology of chronic kidney disease. Cardiol Clin. 2005;23(3):319–30. Morena M, Delbosc S, Dupuy AM, Canaud B, Cristol JP. Overproduction of reactive oxygen species in end-stage renal disease patients: a potential component of hemodialysis-associated inflammation. Hemodial Int. 2005;9(1):37–46. Jung HH, Choi DH, Lee SH. Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am J Nephrol. 2004;24(5):537–42. Mezzano D, Pais EO, Aranda E, Panes O, Downey P, Ortiz M, Tagle R, González F, Quiroga T, Caceres MS. Inflammation, not hyperhomocysteinemia, is related to oxidative stress and hemostatic and endothelial dysfunction in uremia. Kidney Int. 2001;60(5):1844–50. Annuk M, Fellstrom B, Akerblom O, Zilmer K, Vihalemm T, Zilmer M. Oxidative stress markers in pre-uremic patients. Clin Nephrol. 2001;56(4):308–14. Zhu C, Mertens PR. IgA nephropathy and oxidative stress: news on clinically evaluated biomarkers hits the stage. Int Urol Nephrol. 2012;44(4):1277–80. Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, Siamopoulos KC, Tsakiris D. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis. 2006;48(5):752–60. Karamouzis I, Sarafidis PA, Karamouzis M, Iliadis S, Haidich A-B, Sioulis A, Triantos A, Vavatsi-Christaki N, Grekas DM. Increase in oxidative stress but not in antioxidant capacity with advancing stages of chronic kidney disease. Am J Nephrol. 2008;28(3):397–404. Himmelfarb J, Lazarus JM, Hakim R. Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during dialysis. Ame J Kidney Dis. 1991;17(3):271–6. Liakopoulos V, Roumeliotis S, Zarogiannis S, Eleftheriadis T, Mertens PR. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin Dial. 2019;32(1):58–71. Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med. 1999;27(11–12):1151–63. Miyata T, Ueda Y, Yamada Y, Izuhara Y, Wada T, Jadoul M, Saito A, Kurokawa K, van Ypersele de Strihou C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol. 1998;9(12):2349–56. Danielski M, Ikizler TA, McMonagle E, Kane JC, Pupim L, Morrow J, Himmelfarb J. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy. Am J Kidney Dis. 2003;42(2):286–94. Pacheco JFR, Cunha FVM, Neto JMM, de Freitas MCL, de Melo Cunha LA. Hypoalbuminemia and oxidative stress in patients on renal hemodialysis program. Nutr Hosp. 2014;30(4):952–9. Himmelfarb J. Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Semin Dial. 2009;22(6):636–43. Vilar E, Boltiador C, Wong J, Viljoen A, Machado A, Uthayakumar A, Farrington K. Plasma levels of middle molecules to estimate residual kidney function in haemodialysis without urine collection. PLoS One. 2015;10(12):e0143813. Wong J, Kaja Kamal RM, Vilar E, Farrington K. Measuring residual renal function in hemodialysis patients without urine collection. Semin Dial. 2017;30(1):39–49. Lee H-S, Kim SG, Kim J-K, Lee YK, Noh JW, Oh J, Kim HJ, Song YR. Fat-to-lean mass ratio can predict cardiac events and all-cause mortality in patients undergoing hemodialysis. Ann Nutr Metab. 2018;73(3):241–9. Kim C, Kim J-K, Lee H-S, Kim SG, Song YR. Longitudinal changes in body composition are associated with all-cause mortality in patients on peritoneal dialysis. Clin Nutr. 2020;S0261-5614(20)30208–9. Marcelli D, Usvyat LA, Kotanko P, Bayh I, Canaud B, Etter M, Gatti E, Grassmann A, Wang Y, Marelli C. Body composition and survival in dialysis patients: results from an international cohort study. Clin J Am Soc Nephrol. 2015;10(7):1192–200. Onofriescu M, Siriopol D, Voroneanu L, Hogas S, Nistor I, Apetrii M, Florea L, Veisa G, Mititiuc I, Kanbay M. Overhydration, cardiac function and survival in hemodialysis patients. PLoS One. 2015;10(8):e0135691. Wabel P, Moissl U, Chamney P, Jirka T, Machek P, Ponce P, Taborsky P, Tetta C, Velasco N, Vlasak J. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008;23(9):2965–71. Wizemann V, Wabel P, Chamney P, Zaluska W, Moissl U, Rode C, Malecka-Masalska T, Marcelli D. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009;24(5):1574–9. Barreiro E. Role of protein carbonylation in skeletal muscle mass loss associated with chronic conditions. Proteomes. 2016;4(2):18. Christie LA, Opii WO, Head E, Araujo JA, de Rivera C, Milgram NW, Cotman CW. Short-term supplementation with acetyl-L-carnitine and lipoic acid alters plasma protein carbonyl levels but does not improve cognition in aged beagles. Exp Gerontol. 2009;44(12):752–9. Nafar M, Sahraei Z, Salamzadeh J, Samavat S, Vaziri ND. Oxidative stress in kidney transplantation: causes, consequences, and potential treatment. Iran J Kidney Dis. 2011;5(6):357–72. Colombo G, Reggiani F, Cucchiari D, Astori E, Garavaglia ML, Portinaro NM, Saino N, Finazzi S, Milzani A, Badalamenti S. Plasma Protein Carbonylation in Haemodialysed Patients: Focus on Diabetes and Gender. Oxid Med Cell Longev. 2018;2018:4149681. https://doi.org/10.1155/2018/4149681. Pavone B, Sirolli V, Giardinelli A, Bucci S, Forlì F, Di MC, Sacchetta P, Di NP, Pandolfi A, Urbani A. Plasma protein carbonylation in chronic uremia. J Nephrol. 2011;24(4):453–64. Spittle MA, Hoenich NA, Handelman GJ, Adhikarla R, Homel P, Levin NW. Oxidative stress and inflammation in hemodialysis patients. Am J Kidney Dis. 2001;38(6):1408–13. Bellanti F, Romano AD, Buglio AL, Castriotta V, Guglielmi G, Greco A, Serviddio G, Vendemiale G. Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity. Maturitas. 2018;109:6–12. Ren H, Gong D, Jia F, Xu B, Liu Z. Sarcopenia in patients undergoing maintenance hemodialysis: incidence rate, risk factors and its effect on survival risk. Ren Fail. 2016;38(3):364–71. Kim J, Kim S, Oh J, Lee Y, Noh J, Kim H, Song Y. Impact of sarcopenia on long-term mortality and cardiovascular events in patients undergoing hemodialysis. Korean J Intern Med. 2019;34(3):599–607. Fahal IH. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant. 2013;29(9):1655–65. Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428. Vaara ST, Korhonen A-M, Kaukonen K-M, Nisula S, Inkinen O, Hoppu S, Laurila JJ, Mildh L, Reinikainen M, Lund V. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197. Zoccali C, Torino C, Tripepi R, Tripepi G, D’Arrigo G, Postorino M, Gargani L, Sicari R, Picano E, Mallamaci F. Pulmonary congestion predicts cardiac events and mortality in ESRD. J Am Soc Nephrol. 2013;24(4):639–46. Drepper VJ, Kihm LP, Kälble F, Diekmann C, Seckinger J, Sommerer C, Zeier M, Schwenger V. Overhydration is a strong predictor of mortality in peritoneal dialysis patients–independently of cardiac failure. PLoS One. 2016;11(7):e0158741. Vicenté-Martinez M, Martinez-Ramirez L, Muñoz R, Avila M, Rodriguez E, Amato D, Paniagua R. Inflammation in patients on peritoneal dialysis is associated with increased extracellular fluid volume. Arch Med Res. 2004;35(3):220–4. Hassan MO, Duarte R, Dix-Peek T, Vachiat A, Naidoo S, Dickens C, Grinter S, Manga P, Naicker S. Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clin Nephrol. 2016;86(7):131. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj B. Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. J Mol Cell Cardiol. 1996;28(2):375–85. Sanders PW. Salt intake, endothelial cell signaling, and progression of kidney disease. Hypertension. 2004;43(2):142–6. Fang Y, Mu J-J, He L-C, Wang S-C, Liu Z-Q. Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive Asians. Hypertension. 2006;48(4):724–9. Macunluoglu B, Gumrukcuoglu HA, Atakan A, Demir H, Alp HH, Akyol A, Akdag S, Yavuz A, Eren Z, Keskin S. Lowering dialysate sodium improves systemic oxidative stress in maintenance hemodialysis patients. Int Urol Nephrol. 2016;48(10):1699–704. Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin Biochem. 2010;43(4–5):508–11. Dursun E, Dursun B, Suleymanlar G, Ozben T. Effect of haemodialysis on the oxidative stress and antioxidants in diabetes mellitus. Acta Diabetol. 2005;42(3):123–8.