Serre’s conjecture and its consequences

Japanese Journal of Mathematics - Tập 5 - Trang 103-125 - 2010
Chandrashekhar Khare1
1Department of Mathematics, UCLA, Los Angeles, USA

Tóm tắt

After some generalities about the absolute Galois group of $$\mathbb Q$$ , we present the historical context in which Serre made his modularity conjecture. This was recently proved by Wintenberger and the author ([22], [23]), with an input of Kisin ([24]). The focus of these notes is on the applications of the conjecture. Some of the applications are based on the methods used in the proof. We stress some applications to base change and descent for classical modular forms. For base change we have no new results, aside from a fragment for odd A 5-extensions of $$\mathbb Q$$ . Descent for Hilbert modular forms to $$\mathbb Q$$ on the other hand is a simple corollary of Serre’s conjecture.

Tài liệu tham khảo

G. Böckle and C. Khare, Mod ℓ representations of arithmetic fundamental groups. I. An analog of Serre’s conjecture for function fields, Duke Math. J., 129 (2005), 337–369. G. Böckle and C. Khare, Mod ℓ representations of arithmetic fundamental groups. II. A conjecture of A.J. de Jong, Compos. Math., 142 (2006), 271–294. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4), 19 (1986), 409–468. T. Centeleghe , A conjectural mass formula for mod p Galois representations, thesis, Univ. of Utah. 2009 A.J. de Jong, A conjecture on arithmetic fundamental groups, Israel J. Math., 121 (2001), 61–84. L. Dieulefait, Existence of families of Galois representations and new cases of the Fontaine–Mazur conjecture, J. Reine Angew. Math., 577 (2004), 147–151. L. Dieulefait and J. Manoharmayum, Modularity of rigid Calabi–Yau threefolds over \(\mathbb Q\) , In: Calabi–Yau Varieties and Mirror Symmetry, Toronto, ON, 2001, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003, pp. 159–166. V. Drinfeld, The number of two-dimensional irreducible representations of the fundamental group of a curve over a finite field. (Russian), Funktsional. Anal. i Prilozhen., 15 (1981), no. 4, 75–76. N.D. Elkies and M. Schütt, Modular forms and K3 surfaces, preprint, arXiv:0809.0830. J. Ellenberg and C. Skinner, On the modularity of \({\mathbb{Q}}\) -curves, Duke Math. J., 109 (2001), 97–122. S. Fermigier, Annulation de la cohomologie cuspidale de sous-groupes de congruence de \(GL_{n}(\mathbb Z)\) , Math. Ann., 306 (1996), 247–256. J.-M. Fontaine, Il n’y a pas de variété abélienne sur Z, Invent. Math., 81 (1985), 515–538. J.-M. Fontaine and B. Mazur, Geometric Galois representations, In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993, Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. D. Gaitsgory, On de Jong’s conjecture, Israel J. Math., 157 (2007), 155–191. F.Q. Gouvêa, Non-ordinary primes: a story, Experiment. Math., 6 (1997), 195–205. F.Q. Gouvêa and N. Yui, Rigid Calabi–Yau threefolds over \(\mathbb Q\) are modular, preprint. C. Khare, Remarks on mod p forms of weight one, Internat. Math. Res. Notices, 1997 (1997), 127–133; Corrigendum: Internat. Math. Res. Notices, 1999 (1999), 1029–1030. C. Khare, Serre’s modularity conjecture: the level one case, Duke Math. J., 134 (2006), 557–589. C. Khare, Modularity of Galois representations and motives with good reduction properties, J. Ramanujan Math. Soc., 22 (2007), 75–100. C. Khare, Serre’s modularity conjecture: a survey of the level one case, In: Proceedings of the London Math. Soc. conference on L-functions and Galois representations, Durham, 2004, (eds. D. Burns, K. Buzzard and J. Nekovar), London Math. Soc. Lecture Note Ser., 320, Cambridge Univ. Press, Cambridge, 2007, pp. 270–299. C. Khare and J.-P. Wintenberger, On Serre’s conjecture for 2-dimensional mod p representations of \(({\overline {\mathbb Q}}/{\mathbb Q}) \) , Ann. of Math. (2), 169 (2009), 229–253. C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I), Invent. Math., 178 (2009), 485–504. C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (II), Invent. Math., 178 (2009), 505–586. M. Kisin, Modularity of 2-adic Barsotti–Tate representations, Invent. Math., 178 (2009), 587–634. R.P. Langlands, Base Change for GL(2), Ann. of Math. Stud., 96, Princeton Univ. Press, 1980. B. Mazur, Number theory as gadfly, Amer. Math. Monthly, 98 (1991), 593–610. S.D. Miller, Spectral and cohomological applications of the Rankin–Selberg method, Internat. Math. Res. Notices, 1996 (1996), 15–26. D. Ramakrishnan, Modularity of the Rankin–Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2), 152 (2000), 45–111. K.A. Ribet On modular representations of \({\rm Gal}({\overline{\mathbb Q}}/{\mathbb Q})\) arising from modular forms, Invent. Math., 100 (1990), 431–476. K.A. Ribet, Abelian varieties over Q and modular forms, In: Algebra and Topology 1992, Taejŏn, Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. T. Saito, Modular forms and p-adic Hodge theory, Invent. Math., 129 (1997), 607–620. T. Saito, Hilbert modular forms and p-adic Hodge theory, Compos. Math., 145 (2009), 1081–1113. J.-P. Serre, Une interprétation des congruences relatives à la fonction τ de Ramanujan, In: Séminaire Delange–Pisot–Poitou: 1967/68, Théorie des Nombres, Fasc. 1, Exp. 14, Secrétariat mathématique, Paris, 1969, 17 p. J.-P. Serre, Congruences et formes modulaires [d’après H.P.F. Swinnerton-Dyer], Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Math., 317, Springer-Verlag, Berlin, 1973, pp. 319–338. J.-P. Serre, Valeurs propres des opérateurs de Hecke modulo ℓ, Journées Arithmétiques de Bordeaux, Astérisque, 24-25 (1975), 109–117. J.-P. Serre, Œ uvres. Vol. III. 1972–1984, Springer-Verlag, Berlin, 1986. J.-P. Serre, Modular forms of weight one and Galois representations, Œuvres. Vol. III, Springer-Verlag, Berlin, 1986, pp. 292–367. J.-P. Serre, Sur les représentations modulaires de degré 2 de \({\rm Gal}({\overline{\mathbb Q}}/{\mathbb Q})\) , Duke Math. J., 54 (1987), 179–230. J.-P. Serre, Abelian ℓ-adic Representations and Elliptic Curves, Adv. Book Classics, Addison-Wesley, Advanced Book Program, Redwood City, CA, 1989. J.-P. Serre, Letter to the author dated 5/7/09. G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math., 221 (1966), 209–220. C.M. Skinner, A note on the p-adic Galois representations attached to Hilbert modular forms, Doc. Math., 14 (2009), 241–258. C.M. Skinner and A.J. Wiles, Base change and a problem of Serre, Duke Math. J., 107 (2001), 15–25. R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math., 98 (1989), 265–280. R. Taylor, On Galois representations associated to Hilbert modular forms. II, In: Current Developments in Mathematics, 1995, Cambridge, MA, Internat. Press, Cambridge, MA, 1994, pp. 333–340. R. Taylor, On icosahedral Artin representations. II, Amer. J. Math., 125 (2003), 549–566. R. Taylor, Galois representations, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 73–119. S. Wang, On the symmetric powers of cusp forms on GL(2) of icosahedral type, Int. Math. Res. Not., 2003 (2003), 2373–2390. A.J. Wiles, Modular forms, elliptic curves and Fermat’s last theorem, In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 243–245. J.-P. Wintenberger, La conjecture de modularité de Serre: le cas de conducteur 1 [d’après C. Khare], Séminaire Bourbaki, Vol. 2005/2006. J.-P. Wintenberger, On p-adic geometric representations of \(G_\mathbb Q\) , Doc. Math., Extra vol.: J.H. Coates’ Sixtieth Birthday (2006), 819–827. J.-P. Wintenberger, Sur les représentations p-adiques géométriques de conducteur 1 et de dimension 2 de \(G_{\mathbb Q}\) , preprint, arXiv:math/0406576.