Series Parallel Digraphs with Loops

Theory of Computing Systems - Tập 53 - Trang 126-158 - 2012
Stefan Gulan1
1FB IV-Informatik, Universität Trier, Trier, Germany

Tóm tắt

In the conversion of finite automata to regular expressions, an exponential blowup in size can generally not be avoided. This is due to graph-structural properties of automata which cannot be directly encoded by regular expressions and cause the blowup combinatorially. In order to identify these structures, we generalize the class of arc-series-parallel digraphs beyond the acyclic case. The resulting digraphs are shown to be reversibly encoded by linear-sized regular expressions. Also, a characterization of this new class by a set of seven forbidden substructures is given. Automata that require expressions of superlinear size must contain some of these substructures.

Tài liệu tham khảo

Bodlaender, H.L., de Fluiter, B.: Parallel algorithms for series parallel graphs and graphs with treewidth two. Algorithmica 29(4), 534–559 (2001) Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on Discrete Mathematics and Applications, vol. 3 (1999) Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci. 233(1–2), 75–90 (2000) Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986) Diestel, R.: Graph Theory, 3th edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2006) Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. J. Comput. Syst. Sci. 12, 134–146 (1976) Ellul, K., Krawetz, B., Shallit, J., Wang, M.W.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005) Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: STACS, pp. 325–336 (2008) Giammarresi, D., Ponty, J.L., Wood, D., Ziadi, D.: A characterization of Thompson digraphs. Discrete Appl. Math. 134, 317–337 (2004) Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expression size. In: ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Berlin (2008) Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: FOSSAC 2008. LNCS, vol. 4962, pp. 273–286 (2008) Gulan, S., Fernau, H.: Local elimination-strategies in finite automata for shorter regular expressions. In: Theory and Practice of Computer Science: SOFSEM 2008, vol. 2, pp. 46–57 (2008) Gulan, S., Fernau, H.: An optimal construction of finite automata from regular expressions. In: 28th FSTTCS, pp. 211–222 (2008) Gulan, S.: On the relative descriptional complexity of regular expressions and finite automata. Ph.D. thesis, Universität Trier (2011) Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979) Hromkovič, J., Seibert, S.: Translating regular expressions into small epsilon-free nondeterministic finite automata. J. Comput. Syst. Sci. 62, 565–588 (2001) Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM 27(4), 797–821 (1980) Jakoby, A., Tantau, T.: Logspace algorithms for computing shortest and longest paths in series-parallel graphs. In: 27th FSTTCS, pp. 216–227 (2007) Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Annals of Mathematics Studies, pp. 3–41 (1956) Korenblit, M., Levit, V.E.: On algebraic expressions of series-parallel and Fibonacci graphs. In: DMTCS 2003. LNCS, vol. 2731, pp. 215–224. Springer, Berlin (2003) McNaughton, R.: Techniques for manipulating regular expressions. In: Systems and Computer Science, pp. 27–41. University of Toronto Press in association with the University of Western Ontario Toronto, Toronto (1967) Moreira, N., Reis, R.: Series-parallel automata and short regular expressions. Fundam. Inform. 91(3–4), 611–629 (2009) Newman, M.: On theories with a combinatorial definition of “equivalence”. Annals of Mathematics 43(2), 223–243 (1942) Valdes, J.: Parsing flowcharts and series-parallel graphs. Ph.D. thesis, Stanford University (1978). STAN-CS-78-682 Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11(2), 298–313 (1981) Watson, B.W.: A taxonomy of finite automata construction algorithms. Tech. Rep. Computing Science Note 93/43, Eindhoven University of Technology (1994)