Sequential scavenging and measurement of seawater radiocesium concentrations and plutonium isotopic ratios offshore Fukushima
Tài liệu tham khảo
Aarkrog, 1983, Radiocaesium from Sellafield effluents in Greenland waters, Nature, 304, 49, 10.1038/304049a0
Aoyama, 2011, Cross equator transport of 137Cs from North Pacific ocean to south Pacific Ocean (BEAGLE2003 cruises), Prog. Oceanogr., 89, 7, 10.1016/j.pocean.2010.12.003
Aoyama, 2016, 134Cs and 137Cs in the north Pacific Ocean derived from the March 2011 TEPCO fukushima Dai-ichi nuclear power plant accident, Japan. Part one: surface pathway and vertical distributions, J. Oceanogr., 72, 53, 10.1007/s10872-015-0335-z
Aoyama, 2004, Artificial radionuclides database in the Pacific Ocean: HAM database, Sci. World J., 4, 200, 10.1100/tsw.2004.15
Aoyama, 2006, Re-construction and updating our understanding on the global weapons tests 137Cs fallout, J. Environ. Monit., 8, 431, 10.1039/b512601k
Aoyama, 2000, Low level 137Cs measurements in deep seawater samples, Appl. Radiat. Isot., 53, 159, 10.1016/S0969-8043(00)00128-7
Aoyama, 2020, Mass balance and latest fluxes of radiocesium derived from the fukushima accident in the western North Pacific Ocean and coastal regions of Japan, J. Environ. Radioact., 217, 10.1016/j.jenvrad.2020.106206
Asadulin, 2013, Geochemical signature of bottom sediments in the mixing zones of Ob and Yenisei waters with Kara Sea water, Geochem. Int., 51, 1005, 10.1134/S0016702913120021
Becker, 2003, Mass spectrometry of long-lived radionuclides, Spectrochim. Acta Part B At. Spectrosc., 58, 1757, 10.1016/S0584-8547(03)00156-3
Bowen, 1980, Fallout radionuclides in the Pacific Ocean: vertical and horizontal distributions, largely from GEOSECS stations, Earth Planet Sci. Lett., 49, 411, 10.1016/0012-821X(80)90083-7
Broecker, 1986, The distribution of bomb tritium in the ocean, J. Geophys. Res., 91
Bu, 2014, Release of Pu isotopes from the fukushima Daiichi nuclear power plant accident to the marine environment was negligible, Environ. Sci. Technol. Pu, 10.1021/es502480y
Bu, 2014, Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples, J. Chromatogr. A, 1337, 171, 10.1016/j.chroma.2014.02.066
Buesseler, 2012, Fukushima-derived radionuclides in the ocean and biota off Japan, Proc. Natl. Acad. Sci. U. S. A., 109, 5984, 10.1073/pnas.1120794109
Bull, 1974
Chen, 2001
Corbacho, 2022, In situ gamma spectrometry using a portable HPGe detector. Radiological characterisation and environmental surveillance around an operating nuclear power plant. Possibilities and limits, J. Radiol. Prot., 42, 10.1088/1361-6498/ac4116
De Cesare, 2013, Actinides AMS at CIRCE and 236U and Pu measurements of structural and environmental samples from in and around a mothballed nuclear power plant, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 294, 152, 10.1016/j.nimb.2012.05.020
De Cesare, 2010, Actinides AMS at CIRCE in Caserta (Italy), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 268, 779, 10.1016/j.nimb.2009.10.029
Eleftheriou, 2013, Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry, Appl. Radiat. Isot., 82, 268, 10.1016/j.apradiso.2013.08.007
Eigl, 2013, 236U/238U and 240Pu/239Pu isotopic ratios in small (2 L) sea and river water samples, J. Environ. Radioact., 116, 54, 10.1016/j.jenvrad.2012.09.013
Fukuda, 2017, Dissolved radiocaesium in seawater off the coast of Fukushima during 2013–2015, J. Radioanal. Nucl. Chem., 311, 1479, 10.1007/s10967-016-5009-9
Gastaud, 2011, Transport and scavenging of Pu in surface waters of the southern hemisphere oceans, Prog. Oceanogr., 89, 92, 10.1016/j.pocean.2010.12.009
Goodbred, 1998, Floodplain processes in the Bengal Basin and the storage of Ganges–Brahmaputra river sediment: an accretion study using 137Cs and 210Pb geochronology, Sediment. Geol., 121, 239, 10.1016/S0037-0738(98)00082-7
Hain, 2017, Plutonium isotopes (239–241)Pu dissolved in Pacific Ocean waters detected by accelerator mass spectrometry: No effects of the fukushima accident observed, Environ. Sci. Technol., 51, 2031, 10.1021/acs.est.6b05605
Hardy, 1973, Global inventory and distribution of fallout plutonium, Nature, 241, 444, 10.1038/241444a0
Hossain, 2020, Natural and anthropogenic radionuclides in water and wastewater: sources, treatments and recoveries, J. Environ. Radioact., 225, 10.1016/j.jenvrad.2020.106423
Ito, 2003, Anthropogenic radionuclides in the Japan Sea: their distributions and transport processes, J. Environ. Radioact., 68, 249, 10.1016/S0265-931X(03)00064-X
Ješkovský, 2019, Analysis of environmental radionuclides, 2
Ješkovský, 2019, Experimental and Monte Carlo determination of HPGe detector efficiency, J. Radioanal. Nucl. Chem., 322, 1863, 10.1007/s10967-019-06856-4
Kaeriyama, 2017, Oceanic dispersion of Fukushima-derived radioactive cesium: a review, Fish. Oceanogr., 26, 99, 10.1111/fog.12177
Kaizer, 2016, Chromatographic separation methods for preparation of iodine-129 and plutonium targets in AMS measurements, Acta Phys. Univ. Comenianae LIII, 101
Kelley, 1999, Global distribution of Pu isotopes and 237Np, Sci. Total Environ., 237–238, 483, 10.1016/S0048-9697(99)00160-6
Key, 1996, WOCE Pacific Ocean radiocarbon program, Radiocarbon, 38, 415, 10.1017/S003382220003006X
Kim, 2018, Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment, Nucl. Eng. Technol., 50, 801, 10.1016/j.net.2018.03.023
Kumamoto, 2015, Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi nuclear power plant accident, J. Environ. Radioact., 140, 114, 10.1016/j.jenvrad.2014.11.010
Kumamoto, 2014, Southward spreading of the fukushima-derived radiocesium across the Kuroshio extension in the north Pacific, Sci. Rep., 4, 4276, 10.1038/srep04276
Lehto, 2011
Levy, 2011, Marine anthropogenic radiotracers in the Southern Hemisphere: new sampling and analytical strategies, Prog. Oceanogr., 89, 120, 10.1016/j.pocean.2010.12.012
Madigan, 2012, Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California, Proc. Natl. Acad. Sci. USA, 109, 9483, 10.1073/pnas.1204859109
Masson, 2011, Tracking of airborne radionuclides from the damaged fukushima Dai-ichi nuclear reactors by European networks, Environ. Sci. Technol., 45, 7670, 10.1021/es2017158
Men, 2019, Pu isotopes in the seawater off Fukushima Daiichi Nuclear Power Plant site within two months after the severe nuclear accident, Environ. Pollut., 246, 303, 10.1016/j.envpol.2018.12.007
Muramatsu, 2001, Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS, Sci. Total Environ., 278, 151, 10.1016/S0048-9697(01)00644-1
Östlund, 1980, GEOSECS Pacific radiocarbon, Radiocarbon, 22, 25, 10.1017/S0033822200004707
Park, 2008, Determination of low 137Cs concentration in seawater using ammonium 12-molybdophosphate adsorption and chemical separation method, J. Environ. Radioact., 99, 1815, 10.1016/j.jenvrad.2008.07.006
Peng, 1998, Temporal variations of bomb radiocarbon inventory in the Pacific Ocean, Mar. Chem., 60, 3, 10.1016/S0304-4203(97)00089-3
Pham, 2011, A certified reference material for radionuclides in the water sample from Irish Sea (IAEA-443), J. Radioanal. Nucl. Chem., 288, 603, 10.1007/s10967-010-0976-8
Povinec, 2004, Developments in analytical technologies for marine radioactivity studies, 237
Povinec, 1996, Underwater gamma-spectrometry with HPGe and NaI(Tl) detectors, Appl. Radiat. Isot., 47, 1127, 10.1016/S0969-8043(96)00118-2
Povinec, 1998, Worldwide marine radioactivity studies - assessing the picture, IAEA Bull., 40, 11
Povinec, 2003, IAEA’97 expedition to the NW Pacific Ocean - results of oceanographic and radionuclide investigations of the water column, Deep. Res. Part II Top. Stud. Oceanogr., 50, 2607, 10.1016/S0967-0645(03)00138-3
Povinec, 2005, 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans – WOMARS results, J. Environ. Radioact., 81, 63, 10.1016/j.jenvrad.2004.12.003
Povinec, 2008, New isotope technologies for environmental physics, Acta Phys. Slovaca, 58, 10.2478/v10155-010-0088-6
Povinec, 2008, Isotope tracing of submarine groundwater discharge offshore Ubatuba: resultrs of the IAEA-UNESCO SGD project, J. Environ. Radioact., 99, 1596, 10.1016/j.jenvrad.2008.06.010
Povinec, 2010, Tritium, radiocarbon, 90Sr and 129I in the Pacific and Indian oceans, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 268, 1214, 10.1016/j.nimb.2009.10.136
Povinec, 2012, Isotopic, geophysical, and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island, J. Environ. Radioact., 104, 24, 10.1016/j.jenvrad.2011.09.009
Povinec, 2013
Povinec, 2013, Cesium, iodine and tritium in NW Pacific waters-a comparison of the Fukushima impact with global fallout, Biogeosciences, 10, 5481, 10.5194/bg-10-5481-2013
Povinec, 2017, Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western North Pacific Ocean: a comparison with pre-Fukushima situation, J. Environ. Radioact., 166, 56, 10.1016/j.jenvrad.2016.02.027
Povinec, 2019, Marine radioactivity analysis, 2, 315
Roether, 1974, The tritium and carbon-14 profiles at the Geosecs I (1969) and GOGO I (1971) North Pacific stations, Earth Planet Sci. Lett., 23, 108, 10.1016/0012-821X(74)90037-5
Smith, 1995, Radionuclide tracer profiles at the CESAR Ice station and Canadian Ice Island in the western Arctic ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 42, 1449, 10.1016/0967-0645(95)00049-6
Sýkora, 2008, Low-level single and coincidence gamma-ray spectrometry, J. Radioanal. Nucl. Chem., 276, 779, 10.1007/s10967-008-0632-8
Talley, 2007, Hydrographic atlas of the world ocean circulation experiment (WOCE), 2
Tatebe, 2004, Oyashio southward intrusion and cross-gyre transport related to Diapycnal upwelling in the Okhotsk sea, J. Phys. Oceanogr., 34, 2327, 10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2
Thakur, 2013, An overview of Fukushima radionuclides measured in the northern hemisphere, Sci. Total Environ., 458–460, 577, 10.1016/j.scitotenv.2013.03.105
Tsabaris, 2008, An autonomous in situ detection system for radioactivity measurements in the marine environment, Appl. Radiat. Isot., 66, 1419, 10.1016/j.apradiso.2008.02.064
Tsabaris, 2019, Development and optimization of an underwater in-situ cerium bromide spectrometer for radioactivity measurements in the aquatic environment, J. Environ. Radioact., 204, 12, 10.1016/j.jenvrad.2019.03.021
Tsumune, 2011, Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model, Prog. Oceanogr., 89, 38, 10.1016/j.pocean.2010.12.006
Tsumune, 2020, Impacts of direct release and river discharge on oceanic 137Cs derived from the Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioact., 214–215
Uchida, 2018, Comparison of radiocesium concentration changes in leguminous and non-leguminous herbaceous plants observed after the Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioact., 186, 3, 10.1016/j.jenvrad.2017.08.016
2000
Waber, 1987, The impact of the Chernobyl accident on a river/groundwater aquifer, ract, 41, 191, 10.1524/ract.1987.41.4.191
Wu, 2019, Plutonium in the western North Pacific: transport along the Kuroshio and implication for the impact of fukushima Daiichi nuclear power plant accident, Chem. Geol., 511, 256, 10.1016/j.chemgeo.2018.12.006
Yang, 2016, Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water, J. Alloys Compd., 657, 387, 10.1016/j.jallcom.2015.10.068
Zhang, 2015, Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate, Chem. Eng. J., 275, 262, 10.1016/j.cej.2015.04.052