Sequential optimality conditions of approximate proper efficiency for a multiobjective fractional programming problem
Tóm tắt
In this paper, in the absence of any constraint qualifications, we develop sequential optimality conditions for a constrained multiobjective fractional programming problem characterizing an approximate properly efficient solution. This is achieved by employing a powerful combination of conjugate analysis and the concept of approximate subdifferential. We give an example to present significance of sequential optimality conditions.
Tài liệu tham khảo
Boţ, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Springer Science and Business Media. Springer, Berlin (2009)
Combari, C., Laghdir, M., Thibault, L.: Sous-différentiels de fonctions convexes composées. Ann. Math. du Quebec. 18(2), 119–148 (1994)
Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968). https://doi.org/10.1016/0022-247X(68)90201-1
Gutiérrez, C., Huerga, L., Novo, V., Thibault, L.: Sequential \(\epsilon \)-subdifferential calculus for scalar and vector mappings. Set-Valued Var. Anal. 25(2), 383–403 (2017). https://doi.org/10.1007/s11228-016-0386-3
Jeyakumar, V., Wu, Z.Y., Lee, G., Dinh, N.: Liberating the subgradient optimality conditions from constraint qualifications. J. Glob. Optim. 36(1), 127–137 (2006). https://doi.org/10.1007/s10898-006-9003-6
Jeyakumar, V., Lee, G., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14(2), 534–547 (2003). https://doi.org/10.1137/S1052623402417699
Kim, D.S., Kim, S.J., Kim, M.H.: Optimality and duality for a class of nondifferentiable multiobjective fractional programming problems. J. Optim. Theory Appl. 129(1), 131–146 (2006). https://doi.org/10.1007/s10957-006-9048-1
Kim, M.H., Kim, G.S., Lee, G.M.: On \(\epsilon \)-optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory Appl. 2011(1), 1–13 (2011). https://doi.org/10.1186/1687-1812-2011-6
Kohli, B.: Sequential optimality conditions for multiobjective fractional programming problems. J. Math. Sci. 8(2), 128 (2014). https://doi.org/10.1007/s40096-014-0128-3
Liu, J.C., Yokoyama, K.: \(\epsilon \)-Optimality and duality for multiobjective fractional programming. Comput. Math. Appl. 37(8), 119–128 (1999). https://doi.org/10.1016/S0898-1221(99)00105-4
Liu, J.C.: \(\epsilon \)-properly efficient solutions to nondifferentiable multiobjective programming problems. Appl. Math. Lett. 12(6), 109–113 (1999). https://doi.org/10.1016/S0893-9659(99)00087-7
Moustaid, M.B., Rikouane, A., Dali, I., Laghdir, M.: Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brøndsted-Rockafellar approximate subdifferential. Rend. Circolo Mat. Palermo 2, 1–18 (2021). https://doi.org/10.1007/s12215-021-00643-5
Moustaid, M.B., Laghdir, M., Dali, I., Rikouane, A.: Sequential optimality conditions for multi objective fractional programming problems via sequential subdifferential calculus. Matematiche 76(1), 79–96 (2021). https://doi.org/10.4418/2021.76.1.5
Moustaid, M.B., Laghdir, M., Dali I.: Sequential approximate weak optimality conditions for multiobjective fractional programming problems. In: 1st International Conference on Research in Applied Mathematics and Computer Science ICRAMCS, Faculty of Sciences Ben M’sik, Casablanca, Morocco, March 27–29 (2019)
Sun, X.K., Long, X.J., Chai, Y.: Sequential optimality conditions for fractional optimization with applications to vector optimization. J. Optim. Theory. 164(2), 479–499 (2015). https://doi.org/10.1007/s10957-014-0578-7
Sun, X.K., Feng, X., Teo, K.L.: Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data. Optim. Lett. 20, 1–20 (2021). https://doi.org/10.1007/s11590-021-01785-2
Sun, X.K., Long, X.J., Fu, H.Y., Li, X.B.: Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. J. Ind. Manage. 13(2), 803–824 (2017). https://doi.org/10.1007/s11590-021-01785-2
Sun, X.K., Chai, Y., Zeng, J.: Farkas-type results for constrained fractional programming with DC functions. Optim. Lett. 8(8), 2299–2313 (2014). https://doi.org/10.1007/s11590-014-0737-7