Sequential experimental design and response optimisation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aström KJ, Wittenmark B (1989) Adaptive control. Addison Wesley, Reading, Massachusetts
Chaloner K (1984) Optimal Bayesian experimental design for linear models. Annals of Statistics12(1):283–300
Chaloner K (1989) Bayesian design for estimating the turning point of a quadratic regression. Commun. Statist.-Theory Meth.18(4):1385–1400
Chaloner K, Larntz K (1989) Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference21:191–208
Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Statistical Science10(3):273–304
Dette H (1996) A note on Bayesianc- andD-optimal designs in nonlinear regression models. Annals of Statistics24(3):1225–1234
Durham S, Flournoy N, Li W (1998) A sequential design for maximizing the probability of a favorable response. Can. J. Statist.26:479–495
Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York
Fedorov VV, Müller WG (1997) Another view on optimal design for estimating the point of extremum in quadratic regression. Metrika46:147–157
Fel’dbaum AA (1960) Dual control theory. I. Avtomatika i Telemekhanika21(9):1240–1249
Fel’dbaum AA (1960) Dual control theory. II. Avtomatika i Telemekhanika21(11):1453–1464
Fel’dbaum AA (1961) The theory of dual control. III. Avtomatika i Telemekhanika22(1):3–16
Fel’dbaum AA (1961) The theory of dual control. IV. Avtomatika i Telemekhanika22(2):129–142
Ford I, Silvey SD (1980) A sequentially constructed design for estimating a nonlinear parametric function. Biometrika67(2):381–388
Ginebra J, Clayton MK (1995) Response surface bandits. Journal of Royal Statistical SocietyB57(4):771–784
Hardwick J, Stout Q (2001) Optimizing a unimodal response function for binary variables. In: Atkinson A, Bogacka B, Zhigljavsky A (eds.) Optimum Design 2000, Ch 18, pp 195–210, Kluwer, Dordrecht
Hu I (1996) Strong consistency of Bayes estimates in stochastic regression models. Journal of Multivariate Analysis57:215–227
Kpamegan EE, Flournoy N (2000) An optimizing up-and-down design. In: Atkinson A, Bogacka B Zhigljavsky A (eds.) Optimum Design 2000, Ch 19, pp. 211–224, Kluwer, Dordrecht
Kumar PR (1990) Convergence of adaptive control schemes using least-squares parameter estimates. IEEE Transactions on Automatic Control35(4):416–424
TLai L (1994) Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Annals of Statistics22(4):1917–1930
Lai TL, Wei CZ (1982) Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Annals of Statistics10(1):154–166
Müller WG, Pötscher BM (1992) Batch sequential design for a nonlinear estimation problem. In: Fedorov VV, Müller WG, Vuchkov IN (eds.) Model-oriented data analysis II proceedings 2nd IIASA workshop, St Kyrik (Bulgaria), May 1990, pp 76–87. Physica Verlag, Heidelberg
Pronzato L (2000) Adaptive optimisation andD-optimum experimental design. Annals of Statistics28(6):1743–1761
Pronzato L, Walter E (1993) Experimental design for estimating the optimum point in a response surface. Acta Applicandae Mathematicae33:45–68
Sternby J (1977) On consistency for the method of least squares using martingale theory. IEEE Transactions on Automatic Control22(3):346–352
Verdinelli I, Kadane JK (1992) Bayesian designs for maximizing information and outcome. J. Amer. Stat. Assoc.87(418):510–515
Wu CFJ (1988) Optimal design for percentile estimation of a quantal response curve. In: Dodge Y, Fedorov VV, Wynn HP (eds) Optimal Design and Analysis of Experiments, pp 213–223. North Holland, Amsterdam
Wu CFJ, Wynn HP (1978) The convergence of general step-length algorithms for regular optimum design criteria. Annals of Statistics6(6):1273–1285