Sequential experimental design and response optimisation

Luc Pronzato1, Éric Thierry1
1Laboratoire I3S, CNRS/Université de Nice-Sophia Antipolis, Sophia-Antipolis Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aström KJ, Wittenmark B (1989) Adaptive control. Addison Wesley, Reading, Massachusetts

Chaloner K (1984) Optimal Bayesian experimental design for linear models. Annals of Statistics12(1):283–300

Chaloner K (1989) Bayesian design for estimating the turning point of a quadratic regression. Commun. Statist.-Theory Meth.18(4):1385–1400

Chaloner K, Larntz K (1989) Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference21:191–208

Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Statistical Science10(3):273–304

Dette H (1996) A note on Bayesianc- andD-optimal designs in nonlinear regression models. Annals of Statistics24(3):1225–1234

Durham S, Flournoy N, Li W (1998) A sequential design for maximizing the probability of a favorable response. Can. J. Statist.26:479–495

Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York

Fedorov VV, Müller WG (1997) Another view on optimal design for estimating the point of extremum in quadratic regression. Metrika46:147–157

Fel’dbaum AA (1960) Dual control theory. I. Avtomatika i Telemekhanika21(9):1240–1249

Fel’dbaum AA (1960) Dual control theory. II. Avtomatika i Telemekhanika21(11):1453–1464

Fel’dbaum AA (1961) The theory of dual control. III. Avtomatika i Telemekhanika22(1):3–16

Fel’dbaum AA (1961) The theory of dual control. IV. Avtomatika i Telemekhanika22(2):129–142

Ford I, Silvey SD (1980) A sequentially constructed design for estimating a nonlinear parametric function. Biometrika67(2):381–388

Ginebra J, Clayton MK (1995) Response surface bandits. Journal of Royal Statistical SocietyB57(4):771–784

Hardwick J, Stout Q (2001) Optimizing a unimodal response function for binary variables. In: Atkinson A, Bogacka B, Zhigljavsky A (eds.) Optimum Design 2000, Ch 18, pp 195–210, Kluwer, Dordrecht

Hu I (1996) Strong consistency of Bayes estimates in stochastic regression models. Journal of Multivariate Analysis57:215–227

Kpamegan EE, Flournoy N (2000) An optimizing up-and-down design. In: Atkinson A, Bogacka B Zhigljavsky A (eds.) Optimum Design 2000, Ch 19, pp. 211–224, Kluwer, Dordrecht

Kumar PR (1990) Convergence of adaptive control schemes using least-squares parameter estimates. IEEE Transactions on Automatic Control35(4):416–424

TLai L (1994) Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Annals of Statistics22(4):1917–1930

Lai TL, Wei CZ (1982) Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Annals of Statistics10(1):154–166

Müller WG, Pötscher BM (1992) Batch sequential design for a nonlinear estimation problem. In: Fedorov VV, Müller WG, Vuchkov IN (eds.) Model-oriented data analysis II proceedings 2nd IIASA workshop, St Kyrik (Bulgaria), May 1990, pp 76–87. Physica Verlag, Heidelberg

Pronzato L (2000) Adaptive optimisation andD-optimum experimental design. Annals of Statistics28(6):1743–1761

Pronzato L, Walter E (1993) Experimental design for estimating the optimum point in a response surface. Acta Applicandae Mathematicae33:45–68

Sternby J (1977) On consistency for the method of least squares using martingale theory. IEEE Transactions on Automatic Control22(3):346–352

Verdinelli I, Kadane JK (1992) Bayesian designs for maximizing information and outcome. J. Amer. Stat. Assoc.87(418):510–515

Wu CFJ (1988) Optimal design for percentile estimation of a quantal response curve. In: Dodge Y, Fedorov VV, Wynn HP (eds) Optimal Design and Analysis of Experiments, pp 213–223. North Holland, Amsterdam

Wu CFJ, Wynn HP (1978) The convergence of general step-length algorithms for regular optimum design criteria. Annals of Statistics6(6):1273–1285

Wynn HP (1970) The sequential generation ofD-optimum experimental designs. Annals of Math. Stat.41:1655–1664