Sequential estimation of surface water mass changes from daily satellite gravimetry data
Tóm tắt
We propose a recursive Kalman filtering approach to map regional spatio-temporal variations of terrestrial water mass over large continental areas, such as South America. Instead of correcting hydrology model outputs by the GRACE observations using a Kalman filter estimation strategy, regional 2-by-2 degree water mass solutions are constructed by integration of daily potential differences deduced from GRACE K-band range rate (KBRR) measurements. Recovery of regional water mass anomaly averages obtained by accumulation of information of daily noise-free simulated GRACE data shows that convergence is relatively fast and yields accurate solutions. In the case of cumulating real GRACE KBRR data contaminated by observational noise, the sequential method of step-by-step integration provides estimates of water mass variation for the period 2004–2011 by considering a set of suitable a priori error uncertainty parameters to stabilize the inversion. Spatial and temporal averages of the Kalman filter solutions over river basin surfaces are consistent with the ones computed using global monthly/10-day GRACE solutions from official providers CSR, GFZ and JPL. They are also highly correlated to in situ records of river discharges (70–95 %), especially for the Obidos station where the total outflow of the Amazon River is measured. The sparse daily coverage of the GRACE satellite tracks limits the time resolution of the regional Kalman filter solutions, and thus the detection of short-term hydrological events.
Tài liệu tham khảo
Alkama R, Decharme B, Douville H, Becker M, Cazenave A, Sheffield J, Voldoire A, Tyteca S, Le Moigne P (2010) Global evaluation of the ISBA-TRIP continental hydrologic system, Part I: a twofold constraint using GRACE terrestrial water storage estimates and in-situ river discharges. J Hydrometeorol 11:583–600
Bettadpur S (2007) CSR Level-2 processing standards document for level-2 product release 04, GRACE. The GRACE project, Center for Space Research, University of Texas at Austin, pp 327–742
Bruinsma S, Lemoine J-M, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601. doi:10.1016/j.asr.2009.10.012
Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30:1275. doi:10.1029/2002GL016473
Chambers DP, Bonin JA (2012) Evaluation of Release 05 time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868. doi:10.5194/05-8-859-2012
Chen JL, Wilson CR, Tapley BD, Longuevergne L, Yang ZL, Scanlon BR (2010) Recent La Plata basin drought conditions observed by satellite gravimetry. J Geophys Res 115:D22108. doi:10.1029/2010JD014689
Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer K-H (2012) GFZ RL05: an improved time series of monthly GRACE gravity field solutions. In: Observation of the system Earth from space—CHAMP, GRACE, GOCE and future missions. Advanced technologies in Earth sciences, pp 29–39. doi:10.1007/978-3-642-32135-1_4
Desai S (2002) Observing the pole tide with satellite altimetry. J Geophys Res 3186:107. doi:10.1029/2001JC001224
Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134
Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296
Encarnação J, Klees R, Zapreeva E, Ditmar P, Kusche J (2009) Influence of hydrology-related temporal aliasing on the quality of monthly models derived from GRACE satellite gravimetric data. In: Observing our changing Earth, International Association of geodesy symposia, vol 133. Springer, Berlin, pp 323–328. doi:10.1007/978-3-540-85426-5_38
Evensen G (2007) Data assimilation. The ensemble Kalman filter. Springer, Berlin. ISBN:978-3-540-38300-0
Forootan E, Didova O, Schumacher M, Küsche J, Elsaka B (2014) Comparisons of atmosphere mass variations derived from ECMWF reanalysis and operational fields, over 2003 to 2011. J Geod 88:503–514. doi:10.1007/s00190-014-0696-x
Fletchner F (2007) GFZ Level-2 processing standards document for level-2 product release 04, GRACE. Department 1: Geodesy and Remote Sensing, GeoForschungsZentrum, Potsdam, pp 327–742
Frappart F, Ramillien G, Maisongrande P, Bonnet M-P (2010) Denoising satellite gravity signals by Independent Component Analysis. IEEE Geosci Remote Sens Lett 7(3):421–425. doi:10.1109/LGRS.2009.2037837
Frappart F, Ramillien G, Leblanc M, Tweed S, Bonnet M-P, Maisongrande P (2011) An independent Component Analysis filtering approach for estimating continental hydrology in the GRACE gravity data. Remote Sens Environ 115(1):187–204. doi:10.1016/j.rse.2010.08.017
Frappart F, Papa F, Santos da Silva J, Ramillien G, Prigent C, Seyler F, Calmant S (2012) Surface freshwater storage in Amazon basin during the 2005 exceptional drought. Environ Res Lett 7(4):044010. doi:10.1088/1748-9326/7/044010
Frappart F, Ramillien G, Ronchail J (2013a) Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int J Climatol 33(14):3029–3046. doi:10.1002/joc.3647
Frappart F, Seoane L, Ramillien G (2013b) Validation of GRACE-derived water mass storage using a regional approach over South America. Remote Sens Environ 137:69–83. doi:10.1016/j.rse.2013-06-008
Freeden W, Schreiner M (2009) Spherical functions if mathematical geosciences, a scalar, vectorial and tensorial setup. Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin. ISBN:1866-8348
Gleeson T, Wada Y, Bierkens MFP, van Beck LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature. doi:10.1038/nature11295
Guo JY, Duan XJ, Shum CK (2010) Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181:290–302. doi:10.1111/j.1365-246X.2010.04534.x
Günter A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43:W05416. doi:10.1029/2006WR005247
Han S-C, Jekeli C (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109(B04):B04403
Han S-C, Shum CK, Jekeli C (2006) Precise estimation of in situ geopotential differences from GRACE low–low satellite-to-satellite tracking and accelerometer data. J Geophys Res 111:B04411. doi:10.1029/2005JB003719
Han S-C, Kim H, Yeo I-Y, Yeh P, Oki T, Seo K-W, Alsdorf D, Luthcke SB (2009) Dynamics of surface water storage in the Amazon inferred from measurements of inter-satellite distance change. Geophys Res Lett 36:L09403. doi:10.1029/2009GL037910
Han S-C, Yeo I-Y, Alsdorf D, Bates P, Boy J-P, Kim H, Oki T, Rodell M (2010) Movement of Amazon surface water from time-variable satellite gravity measurements and implications for water cycle parameters in land surface models. Geochem Geophys Geosyst 11:Q09007. doi:10.1029/2010GC003214
Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer, New York. ISBN:3-211-23584-1
Hunger M, Döll P (2008) Value of river discharge data for global-scale hydrological modeling. Hydrol Earth Syst Sci 12(3):841– 861
Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75:85–101
Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series D):35–45
Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME J Basic Eng 83:95–107
Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. GRL 36:L17102. doi:10.1029/2009GL039564
Kurtenbach E, Eicker A, Mayer-Gürr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59–60:39–48. doi:10.1016/j.jog.2012.02.006
Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Pérosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39(10):1620–1629. doi:10.1016/j.asc.2007.03.062
LeProvost C, Genco M, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99(C12):24777–24797 [special TOPEX/POSEIDON issue]
McCarthy, Petit G (eds) (2003) IERS conventions. IERS Technical Note 32
Paiva RCD, Buarque DC, Collischonn W, Bonnet M-P, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modelling of the Amazon River basin. Water Resour Res 49(3):1226–1243. doi:10.1002/wrcr.20067
Ramillien G, Biancale R, Gratton S, Vasseur X, Bourgogne S (2011) GRACE-derived surface mass anomalies by energy integral approach. Application to continental hydrology. J Geod 85(6):313–328. doi:10.1007/s00190-010-0438-7
Ramillien GL, Seoane L, Frappart F, Biancale R, Gratton S, Vasseur X, Bourgogne S (2012) Constrained regional recovery of continental water mass time-variations from GRACE-based geopotential anomalies over South America. Surv Geophys 33(5):887–905. doi:10.1007/s10712-012-9177-z
Ray RD, Luthcke SB (2006) Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys J Int 167(8):1055–1059
Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS085030381
Sabaka TJ, Rowlands DD, Luthcke SB, Boy J-P (2010) Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J Geophys Res 115:B11403. doi:10.1029/2010JB007533
Seo KW, Wilson CR, Chen J, Waliser D (2008) GRACE’s spatial errors. Geophys J Int 172(3):41–48. ISSN:0956-540X
Seoane L, Ramillien G, Frappart F, Leblanc M (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrol Earth Syst Sci 17:4925–4939. doi:10.5194/hess-17-4925-2013
Standish EM, Newhall XX, Williams JG et al (1995) JPL planetary and lunar ephemerids, DE403/LE403 JPL IOM 314.10-127
Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285
Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31. doi:10.1029/2004GL019920
Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys Res Lett 31(6):L06619
Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi:10.1029/98JB02844