Sequential and non-sequential simulation of volume holographic gratings

Moritz Kick1,2, Reinhold Fieß1, Wilhelm Stork2
1Robert Bosch GmbH, Renningen, Germany
2Karlsruher Institut für Technologie, Institut für Technik der Informationsverarbeitung, Karlsruhe, Germany

Tóm tắt

In the development process of holographic displays like holographic Head-Mounted Displays (hHMD) the simulation of the complete optical system is strongly required. This especially includes the correct behaviour of the volume holographic grating (VHG) in terms of its optical function and its diffraction efficiency. The latter is not supported by the current version of Zemax®; OpticStudio 17, one of the most popular optic simulation tools. To solve this problem we implemented a C++ code for each raytracing mode of Zemax®;, namely the sequential and non-sequential. The C++ code calculates the grating vector for every single ray traced. Based on the k-sphere formalism the propagation direction of the diffracted light is determined. Furthermore, its diffraction efficiency is defined according to Kogelnik’s coupled-wave theory. The C++ code is compiled and linked into Zemax®; using the Windows Dynamic Link Library (DLL). The aforementioned DLL enables the simulation of planar and arbitrarily spherical curved VHG and their diffraction efficiency within Zemax®; OpticStudio. This allows the fast, easy and reliable simulation of optical systems which include holograms or holographic optical elements, e.g. hHMD. Especially the simulation of VHG in non-sequential mode can be helpful in order to identify possible stray light paths. The implemented C++ code enables the user to simulate VHG and its diffraction efficiency within Zemax®; Optic Studio.

Tài liệu tham khảo

Kasai, I, Tanijiri, Y, Endo, T, Ueda, H: A practical see-through head mounted display using a holographic optical element. Opt. Rev. 8(4), 241–244 (2001). Maimone, A, Georgiou, A, Kollin, JS: Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36(4), 85–18516 (2017). Hsieh, P-Y, Oi, R, Senoh, T, Sasaki, H, Ichihashi, Y, Okui, M, Huang, Y-P, Yamamoto, K, Wakunami, K: Projection-type see-through holographic three-dimensional display. Nat. Commun. 7, 12954–12961 (2016). Hong, J, Yeom, J, Kim, Y, Park, J, Cho, J, Hong, S, Jung, K-M, Kang, H, Lee, B: See-through three-dimensional display using printed holographic-optical-element. In: Digital Holography & 3-D Imaging Meeting, pp. 2–4. Optical Society of America (2015). Sinha, A, Barbastathis, G: Broadband volume holographic imaging. Appl. Opt. 43(27), 5214–5221 (2004). Wissmann, P, Oh, SB, Barbastathis, G: Simulation and optimization of volume holographic imaging systems in zemax®;,. Opt. Express. 16(10), 7516–7524 (2008). Kalkum, F: Fast numerical simulation of diffraction from large volume holograms. J. Opt. Soc. Am. A. 26(11), 2393–2397 (2009). Kogelnik, H: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969). Luo, Y, Castro, J, Barton, JK, Kostuk, RK, Barbastathis, G: Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems. Opt. Express. 18(18), 19273–19285 (2010). Syms, R, Solymar, L: Localized one-dimensional theory for volume holograms. Optical & Quantum Electronics. 13(5), 415–419 (1981). Jurbergs, D, Bruder, F-K, Deuber, F, Fäcke, T, Hagen, R, Hönel, D, Rölle, T, Weiser, M-S, Volkov, A: New recording materials for the holographic industry. In: Proc. SPIE 7233, Practical Holography XXIII: Materials and Applications, pp. 72330–7233010 (2009). Jurbergs, D, Bruder, F-K, Deuber, F, Fäcke, T, Hagen, R, Hönel, D, Rölle, T, Weiser, M-S, Volkov, A: Reaction-diffusion model applied to high resolution bayfol ®;hx photopolymer. In: Proc. SPIE 7619, Practical Holography XXIV: Materials and Applications, pp. 76190–7619015 (2010). Berneth, H, Bruder, FK, Fäcke, T, Hagen, R, Hönel, D, Rölle, T, Weiser, M-S, Jurbergs, D: Holographic recording aspects of high-resolution bayfol ®;hx photopolymer. In: Proc. SPIE 7957, Practical Holography XXV: Materials and Applications, pp. 79570–7957015 (2011). Berneth, H, Bruder, F-K, Fäcke, T, Hagen, R, Hönel, D, Rölle, T, Walze, G, Weiser, M-S: Holographic recordings with high beam ratios on improved bayfol ®;hx photopolymer. In: Proc. SPIE 8776, Holography: Advances and Modern Trends III, vol. 8776, pp. 877603–87760312 (2013). Berneth, H, Bruder, F-K, Fäcke, T, Hagen, R, Hönel, D, Rölle, T, Walze, G, Jurbergs, D: Bayfol hx photopolymer for full-color transmission volume bragg gratings. In: Proc. SPIE 9006, Practical Holography XXVIII: Materials and Applications, vol. 9006, pp. 900602–90060210 (2014). Lindlein, N: Analyse und optimierung diffraktiver optischer systeme. Friedrich-Alexander-Universität Erlangen-Nürnberg (1996). PhD thesis. Bragg, WL: The diffraction of short electromagnetic waves by a crystal. In: Proceedings of the Cambridge Philosophical Society, pp. 43–57 (1913). Zemax: OpticStudio 16 SP2 Help Files (2016).