Sequencing technologies — the next generation

Nature Reviews Genetics - Tập 11 Số 1 - Trang 31-46 - 2010
Michael L. Metzker1
1Human Genome Sequencing Center and Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, N1409, Houston, 77030, Texas, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Human Genome Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

Metzker, M. L. Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776 (2005).

Hutchison, C. A. III. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 35, 6227–6237 (2007).

Wold, B. & Myers, R. M. Sequence census methods for functional genomics. Nature Methods 5, 19–21 (2008).

Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009). The Review provides a comprehensive overview of recent advances and challenges in techniques that are used in transcriptome profiling methods that use NGS technologies (RNA–seq).

Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotech. 26, 1146–1153 (2008). An excellent review of the current state of nanopore sequencing that highlights recent accomplishments and remaining challenges in the field.

Fan, J.-B., Chee, M. S. & Gunderson, K. L. Highly parallel genomic assays. Nature Rev. Genet. 7, 632–644 (2006).

Pop, M. & Salzberg, S. L. Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149 (2008).

Dressman, D., Yan, H., Traverso, G., Kinzler, K. W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 100, 8817–8822 (2003).

Fedurco, M., Romieu, A., Williams, S., Lawrence, I. & Turcatti, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 34, e22 (2006).

Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005). This paper describes the development of the non-cleavable SBL method and shows its feasibility by sequencing the E. coli genome. The prototype described led to the development of the Polonator instrument.

Kim, J. B. et al. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484 (2007).

Leamon, J. H. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24, 3769–3777 (2003).

Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008). Developers from Helicos BioSciences and colleagues describe the development of the first single-molecule sequencing method using reversible terminators and demonstrate the technology by sequencing the M13 genome.

Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009). The authors describe the development of a real-time sequencing method using their ZMW detection system and demonstrate its feasibility by sequencing synthetic templates.

Hardin, S., Gao, X., Briggs, J., Willson, R. & Tu, S.-C. Methods for real-time single molecule sequence determination. US Patent 7,329,492 (2000).

Williams, J. G. K. System and methods for nucleic acid sequencing of single molecules by polymerase synthesis. US Patent 6,255,083 (1998).

Erlich, Y., Mitra, P. P., delaBastide, M., McCombie, W. R. & Hannon, G. J. Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nature Methods 5, 679–682 (2008).

Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified deoxyribonucleoside triphosphates. Nucleic Acids Res. 22, 4259–4267 (1994).

Canard, B. & Sarfati, R. DNA polymerase fluorescent substrates with reversible 3′-tags. Gene 148, 1–6 (1994).

Ju, J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl. Acad. Sci. USA 103, 19635–19640 (2006).

Guo, J. et al. Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc. Natl Acad. Sci. USA 105, 9145–9150 (2008).

Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008). Developers from Illumina/Solexa and colleagues report details on their reversible terminator platform and demonstrate the technology by sequencing a flow-sorted X chromosome and the genome from a Yoruban male.

Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

Hillier, L. W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nature Methods 5, 183–188 (2008).

Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 10, R32 (2009).

Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

Sarin, S., Prabhu, S., O'Meara, M. M., Pe'er, I. & Hobert, O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nature Methods 5, 865–867 (2008).

Wu, W. et al. Termination of DNA synthesis by N6-alkylated, not 3′-O-alkylated, photocleavable 2′-deoxyadenosine triphosphates. Nucleic Acid Res. 35, 6339–6349 (2007).

Wu, W., Litosh, V. A., Stupi, B. P. & Metzker, M. L. Photocleavable labeled nucleotides and nucleosides and methods for their use in DNA sequencing. US Patent Application 11/567,189 (2009).

Bowers, J. et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nature Methods 6, 593–595 (2009).

Braslavsky, I., Hebert, B., Kartalov, E. & Quake, S. R. Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA 100, 3960–3964 (2003).

Tomkinson, A. E., Vijayakumar, S., Pascal, J. M. & Ellenberger, T. DNA ligases: structure, reaction mechanism, and function. Chem. Rev. 106, 687–699 (2006).

Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).

Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008). This paper describes Life/APG's SBL method, which uses cleavable two-base-encoded probes on the SOLiD platform. The authors demonstrate the technology through the application of genome-wide nucleosome mapping in C. elegans .

Shen, Y., Sarin, S., Liu, Y., Hobert, O. & Pe'er, I. Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing. PLoS ONE 3, e4012 (2008).

Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. & Nyrén, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89 (1996).

Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005). The authors describe the development of the first NGS technology using the pyrosequencing method and demonstrate its feasibility through the sequencing and de novo assembly of the Mycoplasma genitalium genome.

Metzker, M. L. Sequencing in real time. Nature Biotech. 27, 150–151 (2009).

Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. Nature Biotech. 27, 455–457 (2009).

Chaisson, M. J., Brinza, D. & Pevzner, P. A. De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res. 19, 336–346 (2009).

Hofreuter, D. et al. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 74, 4694–4707 (2006).

Holt, K. E. et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genet. 40, 987–993 (2008).

Srivatsan, A. et al. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 4, e1000139 (2008).

Suchland, R. J. et al. Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations. Infect. Immun. 76, 5438–5446 (2008).

Nusbaum, C. et al. Sensitive, specific polymorphism discovery in bacteria using massively parallel sequencing. Nature Methods 6, 67–69 (2009).

Moran, N. A., McLaughlin, H. J. & Sorek, R. The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323, 379–382 (2009).

Ossowski, S. et al. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18, 2024–2033 (2008).

Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

Warren, R. L., Sutton, G. G., Jones, S. J. M. & Holt, R. A. Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501 (2007).

Chaisson, M. J. & Pevzner, P. A. Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330 (2008).

Hernandez, D., François, P., Farinelli, L., Østerås, M. & Schrenzel, J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18, 802–809 (2008).

Butler, J. et al. ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 18, 810–820 (2008).

Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

Aury, J.-M. et al. High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies. BMC Genomics 9, 603 (2008).

Reinhardt, J. A. et al. De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res. 19, 294–305 (2009).

Schloss, J. A. How to get genomes at one ten-thousandth the cost. Nature Biotech. 26, 1113–1115 (2008).

Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

Wang, L. & Weinshilboum, R. M. Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum. Mol. Genet. 17, R174–R179 (2008).

Haaland, W. C. et al. A–β– subtype of ketosis-prone diabetes is not predominantly a monogenic diabetic syndrome. Diabetes Care 32, 873–877 (2009).

Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nature Biotech. 27, 1025–1031 (2009).

Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotech. 17, 974–978 (1999).

Albert, T. J. et al. Direct selection of human genomic loci by microarray hybridization. Nature Methods 4, 903–905 (2007).

Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007).

Okou, D. T. et al. Microarray-based genomic selection for high-throughput resequencing. Nature Methods 4, 907–909 (2007).

Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nature Methods 4, 931–936 (2007).

Krishnakumar, S. et al. A comprehensive assay for targeted multiplex amplification of human DNA sequences. Proc. Natl Acad. Sci. USA 105, 9296–9301 (2008).

Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nature Methods 6, 315–316 (2009).

Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotech. 27, 182–189 (2009).

Olson, M. Enrichment of super-sized resequencing targets from the human genome. Nature Methods 4, 891–892 (2007).

Garber, K. Fixing the front end. Nature Biotech. 26, 1101–1104 (2008).

Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A. & Versalovic, J. Metagenomic pyrosequencing and microbial identification. Clin. Chem. 55, 856–866 (2009). These authors describe the current state of metagenomics research and highlight the use of the Roche/454 platform for microbial identification through16S ribosomal DNA phylogenetic analysis; other NGS platforms may be better suited for gene discovery efforts (see Table 2).

Lipson, D. et al. Quantification of the yeast transcriptome by single-molecule sequencing. Nature Biotech. 27, 652–658 (2009).

Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009).

Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009). The article provides a comprehensive review of recent technological advances and challenges in genome-wide profiling of DNA-binding proteins, histone modifications and nucleosomes using NGS technologies (ChIP–seq).

Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet. 36, 949–951 (2004).

Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet. 37, 727–732 (2005).

Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

Kim, J. I. et al. A highly annotated whole-genome sequence of a Korean individual. Nature 460, 1011–1015 (2009).

Ahn, S. M. et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 19, 1622–1629 (2009).

McKernan, K. J. et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541 (2009).

Pushkarev, D., Neff, N. F. & Quake, S. R. Single-molecule sequencing of an individual human genome. Nature Biotech. 27, 847–850 (2009).

Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

Lupski, J. R. et al. Complete genome sequencing identifies recessive alleles in SH3TC2 causing a CMT1 neuropathy. N. Engl. J. Med. (in the press).

Collins, F. S. & Barker, A. D. Mapping the cancer genome. Sci. Am. 296, 50–57 (2007).

Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 5 Nov 2009 (doi:10.1126/science.1181498).

Sanderson, K. Personal genomes: standard and pores. Nature 456, 23–25 (2008).

Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

Briggs, A. W. et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009).

Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

Barnes, C., Balasubramanian, S., Liu, X., Swerdlow, H. & Milton, J. Labelled nucleotides. US Patent 7,057,026 (2002).

Mitra, R. D., Shendure, J., Olejnik, J., Edyta-Krzymanska-Olejnik & Church, G. M. Fluorescent in situ sequencing on polymerase colonies. Anal. Biochem. 320, 55–65 (2003).

Turcatti, G., Romieu, A., Fedurco, M. & Tairi, A.-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 36, e25 (2008).

Yarbrough, L. R., Schlageck, J. G. & Baughman, M. Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. J. Biol. Chem. 254, 12069–12073 (1979).

Kumar, S. et al. Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by DNA polymerases. Nucleosides Nucleotides Nucleic Acids 24, 401–408 (2005).

McKernan, K., Blanchard, A., Kotler, L. & Costa, G. Reagents, methods, and libraries for bead-based sequencing. US Patent Application 11/345,979 (2005).

Macevicz, S. C. DNA sequencing by parallel oligonucleotide extensions. US Patent 5,969,119 (1995).

Mir, K. U., Qi, H., Salata, O. & Scozzafava, G. Sequencing by cyclic ligation and cleavage (CycLiC) directly on a microarray captured template. Nucleic Acids Res. 37, e5 (2009).