Sequenced spatiotemporal aggregation for coarse query granularities
Tóm tắt
Sequenced spatiotemporal aggregation (SSTA) is an important query for many applications of spatiotemporal databases, such as traffic analysis. Conceptually, an SSTA query returns one aggregate value for each individual spatiotemporal granule. While the data is typically recorded at a fine granularity, at query time a coarser granularity is common. This calls for efficient evaluation strategies that are granularity aware. In this paper, we formally define an SSTA operator that includes a data-to-query granularity conversion. Based on a discrete time model and a discrete 1.5 dimensional space model, we generalize the concept of time constant intervals to constant rectangles, which represent maximal rectangles in the spatiotemporal domain over which an aggregation result is constant. We propose an efficient evaluation algorithm for SSTA queries that takes advantage of a coarse query granularity. The algorithm is based on the plane sweep paradigm, and we propose a granularity aware event point schedule, termed gaEPS, and a granularity aware sweep line status, termed gaSLS. These data structures store space and time points from the input relation in a compressed form using a minimal set of counters. In extensive experiments, we show that for coarse query granularities gaEPS significantly outperforms a basic EPS that is based on an extension of previous work, both in terms of memory usage and runtime.
Tài liệu tham khảo
Bayer, R.: Binary b-trees for virtual memory. In: ACM SIGFIDET, pp. 219–235 (1971)
Becker B., Gschwind S., Ohler T., Seeger B., Widmayer P.: An asymptotically optimal multiversion b-tree. VLDB J. 5(4), 264–275 (1996)
Bentley J.L.: Algorithms for Klee’s Rectangle Problems. Computer Science Department, Carnegie-Mellon University, Pittsburgh (1977)
Böhlen M.H., Gamper J., Jensen C.S.: Multi-dimensional aggregation for temporal data. In: EDBT, pp. 257–275 (2006)
Brinkhoff T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)
Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms. 2nd edn. The MIT Press, Cambridge (2001)
Dieker, S., Güting, R.H.: Plug and play with query algebras: SECONDO—a generic DBMS development environment. In: IDEAS, pp. 380–392 (2000)
Edelsbrunner H.: Dynamic Rectangle Intersection Searching. Institute for Information Processing Rept. 47, Technical University of Graz, Austria (1980)
Geffner, S., Agrawal, D., El Abbadi, A., Smith, T.: Relative prefix sums: an efficient approach for querying dynamic olap data cubes. In: Proceedings of the ICDE-99, pp. 328–335, March (1999)
Google. Google’s sparsehash project. http://code.google.com/p/google-sparsehash/. Current as of December 12, (2008)
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)
Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proceedings of SIGMOD-97, pp. 171–182 (1997)
Jensen, C.S., Lee, K.-J., Pakalnis, S., Šaltenis, S.: Advanced tracking of vehicles. In: European Congress and Exhibition on ITS, p. 12 (2005)
Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: ICDE, pp. 222–231 (1995)
Lopez I.F.V., Snodgrass R.T., Moon B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)
McCreight E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
Moon B., López I.F.V., Immanuel V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)
Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: SSTD, pp. 443–459 (2001)
Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing spatio-temporal data warehouses. In: ICDE, pp. 166–175, (2002)
Samet H.: Hierarchical representations of collections of small rectangles. ACM Comput. Surv. 20(4), 271–309 (1988)
Sun, J., Papadias, D., Tao, Y., Liu, B.: Querying about the past, the present, and the future in spatio-temporal databases. In: ICDE, pp. 202–213 (2004)
Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using sketches. In: ICDE, pp. 214–226 (2004)
Tao, Y., Papadias, D., Zhang, J.: Aggregate processing of planar points. In: EDBT, pp. 682–700 (2002)
Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. In: ICDE, pp. 51–60 (2001)
Yang J., Widom J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12, 262–283 (2003)
Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range predicates. In: PODS, pp. 237–245 (2001)
Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: On computing temporal aggregates with range predicates. ACM Trans. Database Syst. 33(2), 12:1–12:39 (2008)
Zhang, D., Tsotras, V.J.: Improving min/max aggregation over spatial objects. In: Proceedings of the 9th ACM International Symposium on Advances in Geographic Information Systems, GIS ’01, pp. 88–93 (2001)
Zhang, D., Tsotras, V.J., Gunopulos, D.: Efficient aggregation over objects with extent. In: PODS, pp. 121–132 (2002)