Chuỗi sự kiện magmatic trong thời kỳ Đệ Tứ Paleozoic ở Transbaikalia, Nga (Dữ liệu đồng vị U-Pb)

Russian Geology and Geophysics - Tập 51 Số 9 - Trang 972-994 - 2010
А. А. Цыганков1, B.A. Litvinovsky2, Bor–ming Jahn3, Marc Reichow4, D.Y. Liu5, А. Н. Ларионов6, S. L. Presnyakov6, Ye. N. Lepekhina6, С. А. Сергеев6
1Geological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, 670047, Russia
2Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
3Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
4Department of Geology, University of Leicester, University Rd, Leicester, LE1 7RH, UK
5Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
6Center for Isotopic Research, All-Russian Geological Research Institute (VSEGEI), Srednii Prospekt 74, St. Petersburg, 199106, Russia

Tóm tắt

Tóm tắt Các đá xâm nhập muộn Paleozoic, chủ yếu là granitoid, chiếm tới hơn 200,000 km2 tại lãnh thổ Transbaikalia. Phương pháp xác định tuổi zircon U-Pb đồng vị (khoảng 30 mẫu từ các pluton điển hình nhất) cho thấy chu kỳ magmatic muộn Paleozoic kéo dài từ 55 đến 60 triệu năm, từ khoảng 330 Ma đến 275 Ma. Trong khoảng thời gian này, năm bộ xâm nhập đã được hình thành trong toàn khu vực. Bộ xâm nhập sớm nhất là các granite kiềm cao calc-alkaline (330–310 Ma) tạo thành batholith Angara–Vitim có diện tích 150,000 km2. Ở các giai đoạn sau, sự hình thành những bộ xâm nhập hóa học khác nhau đã xảy ra với sự chồng chéo về thời gian hoàn toàn hoặc một phần. Trong khoảng thời gian 305–285 Ma, hai bộ đã hình thành: granitoid calc-alkaline với hàm lượng SiO2 giảm (bộ Chivyrkui của monzonite và granodiorite) và bộ Zaza bao gồm granite và syenite chuyển tiếp từ calc-alkaline sang kiềm. Ở giai đoạn tiếp theo, trong khoảng 285–278 Ma, bộ Low Selenga shoshonitic được tạo thành từ monzonite, syenite và microgabbro giàu kiềm; bộ này đã được tiếp theo bởi sự hình thành của bộ Early Kunalei gồm syenite và granite kiềm (feldspar kiềm), với sự chồng chéo thời gian đáng kể (281–276 Ma). Sự hình thành đồng thời của các bộ xâm nhập khác nhau cho thấy quá trình tạo magma diễn ra đồng thời ở các độ sâu khác nhau và, có thể, từ các nguồn khác nhau. Mặc dù chuỗi hình thành phức tạp của các bộ xâm nhập muộn Paleozoic, một xu hướng chung từ granitoid calc-alkaline kiềm cao đến granitoid kiềm và peralkaline là rất rõ ràng. Dữ liệu mới về tuổi zircon U-Pb đồng vị hỗ trợ dữ liệu đồng vị Rb-Sr cho thấy rằng sự hình thành khối lượng lớn syenite và granite kiềm (feldspar kiềm) đã xảy ra trong hai giai đoạn riêng biệt: Đê thứ nhất thời kỳ Permian sớm (281–278 Ma) và cuối Trias (230–210 Ma). Khối lượng lớn và thành phần cụ thể của các granitoid cho thấy rằng hoạt động magmatism muộn Paleozoic ở Transbaikalia xảy ra liên tiếp trong môi trường sau va chạm (330–310 Ma), chuyển tiếp (305–285 Ma) và trong mảng kiến tạo (285–275 Ma).

Từ khóa


Tài liệu tham khảo

Abramovich, 1989, Magmatic Formations in Southern Siberia and Northern Mongolia (Explanatory Note to a Map of Magmatic Formations in Southern Siberia and Northern Mongolia, Scale 1 : 1,500,000)

Be’eri-Shlevin, 2009, Post-collisional tectonomagmatic evolution in the northern Arabian-Nubian Shield: time constraints from ion-probe U-Pb dating of zircon, J. Geol. Soc. London, 166, 1

Belichenko, 2006, Barguzin microcontinent (Baikal mountain area): the problem of outlining. Russian Geology and Geophysics, Geologiya i Geofizika, 47, 1035

Black, 2003, TEMORA 1: a new zircon standard for U-Pb geochronology, Chem. Geol., 200, 155, 10.1016/S0009-2541(03)00165-7

Bonin, 2004, Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review, Lithos, 78, 1, 10.1016/j.lithos.2004.04.042

Bonin, 2007, A-type granites and related rocks: Evolution of a consept, problems and prospects, Lithos, 97, 1, 10.1016/j.lithos.2006.12.007

Budnikov, 1995, New data on the age of the Barguzin granitoid complex in the Angara–Vitim batholith, Dokl. Akad. Nauk, 344, 377

Bukharov, 1992, Geology of the Baikal-Patom Upland according to new data of U-Pb dating of accessory zircon. Geologiya i Geofizika, Russian Geology and Geophysics, 33, 29

Chen, 2004, Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence, J. Asian Earth Sci., 23, 691, 10.1016/S1367-9120(03)00118-4

Dobretsov, 2005, 250 Ma large igneous provinces of Asia: Siberian and Emeishan traps (plateau basalts) and associated granitoids, Russian Geology and Geophysics (Geologiya i Geofizika), 46, 847

Dobretsov, 2008, Geological implications of the thermochemical plume model. Russian Geology and Geophysics, Geologiya i Geofizika, 49, 441

Eyal, 2009, Origin and evolution of Post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the the Sinai Peninsula, Chem. Geol., 239, 153

Filimonov, 1999, The Urma rock unit, a reference Upper Devonian straton in western Transbaikalia. Vestnik Voronezhskogo Gosudarstvennogo Universiteta, Ser. Geol., 46

Gerasimov, 2007, The Early Paleozoic age of the Angara–Vitim batholith, in: The Geodynamic Evolution of Lithosphere in the Central Asian Mobile Belt, 49

Gladkochub, 2008, Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia), J. Geol. Soc. London, 165, 235, 10.1144/0016-76492006-125

Gordienko, 1987, The Paleozoic Magmatism and Geodynamics of the Central Asian Mobile Belt

Gordienko, 1978, Paleozoic Magmatic Formations in the Sayan-Baikal Mountainous Area

Gordienko, 2003, Lithosphere delamination and related magmatism in folded areas (by the example of the folded framing on the southern Siberian Platform), Problems of Global Geodynamics. Proc. Theoretical Seminar of the Geology, Geophysics, Geochemistry, and Mining Sciences Department of the Russian Academy of Sciences, 185

Gordienko, 2004, Early and Late Paleozoic collision settings and their role in the formation of lithosphere in the Sayan–Baikal folded area, 108

Han, 1997, Depleted-mantle magma source for the Ulungu River A-type granites from north Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implication for Phanerozoic crustal growth, Chem. Geol., 138, 135, 10.1016/S0009-2541(97)00003-X

Jahn, 2009, Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance, Lithos, 113, 521, 10.1016/j.lithos.2009.06.015

Kovalenko, 2004, Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence, J. Asian Earth Sci., 23, 605, 10.1016/S1367-9120(03)00130-5

Kozubova, 1977, The Kydzhimit rare-metal granite complex and radiological substantiation of its age (northwestern Transbaikalia), Izv. Akad. Nauk SSSR. Ser. Geol., 31

Kozubova, 1980, The radiologic age and composition of the Chivyrkui pluton (Baikal mountainous area), Dokl. Akad. Nauk SSSR, 251, 948

Leont’ev, 1981, Paleozoic Granitoid Magmatism in the Central Asian Fold Belt

Liégeois, 1998, Prefaces–some words on post-collisional magmatism, Lithos, 45, 15

Liégeois, 1998, Conrasting origin of post-collisional high-K calk-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization, Lithos, 45, 1, 10.1016/S0024-4937(98)00023-1

Litvinovsky, 1976, Paleozoic Granitoid Magmatism in Western Transbaikalia

Litvinovsky, 1998, Compositional trends of silicic and mafic magmas formed in the course of evolution of the Mongolian-Transbaikalian mobile belt. Geologiya i Geofizika, Russian Geology and Geophysics, 39, 157

Litvinovsky, 1993, The Angara–Vitim Batholith, the Largest Granitoid Pluton

Litvinovsky, 1995, Repeated mixing of coexisting syenitic and basic magmas and its petrological significance, Ust-Khilok massif, Transbaikalia, Petrologiya, 3, 133

Litvinovsky, 1995, Model of composite basite-granitoid dike generation (Shaluta Pluton, Transbaikalia). Geologiya i Geofizika, Russian Geology and Geophysics, 36, 3

Litvinovsky, 1995, Unusual Rb-Sr data on the age of two standard alkaline-granitoid massifs of Transbaikal. Geologiya i Geofizika, Russian Geology and Geophysics, 36, 65

Litvinovsky, 1999, New Rb-Sr data on the age of Late Paleozoic granitoids in Western Transbaikalia. Geologiya i Geofizika, Russian Geology and Geophysics, 40, 694

Litvinovsky, 2001, Late Triassic stage of formation of the Mongolo-Transbaikalian alkaline-granitoid province: data of isotope-geochemical studies. Geologiya i Geofizika, Russian Geology and Geophysics, 42, 445

Litvinovsky, 2002, Petrogenesis of syenite-granite suite from Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas, Chem. Geol., 189, 105, 10.1016/S0009-2541(02)00142-0

Ludwig, 2000, SQUID 1.00. A User’s Manual, Berkeley Geochronology Center Special Publication

Ludwig, 2001, Isoplot/Ex rev. 2.49. A Geochronological Toolkit for Microsoft Excel

Minina, O.R. , 2003. Stratigraphy and Miospore Complexes of the Upper Devonian Deposits in the Sayan–Baikal Mountainous Area. PhD Thesis [in Russian]. IZK SO RAN, Irkutsk.

Neimark, 1993, The Hercynian age and Precambrian crustal protolith of the Barguzin granitoids of the Angara–Vitim batholith: U-Pb and Sm-Nd isotope evidence, Dokl. Akad. Nauk, 331, 726

Nédélec, 1995, The Panafrican stratoid granites of Madagaskar; alkaline magmatism in a post-collisional setting, J. Petrol., 36, 1367, 10.1093/petrology/36.5.1367

Parfenov, 2003, A model for the formation of orogenic belts in Central and Northeastern Asia, Tikhookeanskaya Geologiya, 22, 7

Polyakov, 1989, Map of Magmatic Formations in Southern Siberia and Northern Mongolia

Posokhov, 2005, Rb-Sr age and sequence of formation of granitoids of the Khorinka volcanoplutonic structure in the Mongolo-Transbaikalian belt. Russian Geology and Geophysics, Geologiya i Geofizika, 46, 612

Reichow, 2010, Multi-stage emplacement of alkaline and peralkaline syenite-granite suites in the Mongolian–Transbaikalian Belt, Russia: Evidence from U-Pb geochronology and whole-rock geochemistry, Chem. Geol., 273, 120, 10.1016/j.chemgeo.2010.02.017

Reyf, 1976, The Physicochemical Conditions of Formation of Large Granitoid Masses in eastern Baikal region

Rudnick, 2003, Composition of the continental crust, The Crust, 1

Ruzhentsev, 2005, The tectonics of the Ikat-Bagdara and Dzhida zones in western Transbaikalia, The Tectonic Problems in Central Asia, 171

Rytsk, E.Yu., Makeev, A.F., Shalaev, V.S., 2002. Granitoids in the east of the Angara–Vitim batholith: U-Pb isotope data, in: Geology, Geochemistry, and Geophysics at the Boundary of the 20th and 21st Centuries. Proc. Conf. Russian Foundation for Basic Research in Asian Russia [in Russian]. Irkutsk, pp. 400–401.

Rytsk, 2007, Early Vendian age of multiple gabbro-granite complexes of the Karalon-Mamakan zone, Baikal–Muya belt: new U-Pb zircon data, Dokl. Earth Sci., 415A, 911, 10.1134/S1028334X07060189

Steiger, 1977, Subcommision on geochronology: convention of the use of decay constant in geo- and cosmo-chronology, Earth Planet. Sci. Lett., 36, 359, 10.1016/0012-821X(77)90060-7

Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Oceanic Basins. Geol. Soc. London Spec. Publ., 313

Tsygankov, 2007, Late Paleozoic granitoids of western Transbaikalia: magma sources and stages of formation. Russian Geology and Geophysics, Geologiya i Geofizika, 48, 120

Turutanov, 2007, A bulk model of the Angara–Vitim batholith, in: Geodynamic Evolution of Lithosphere in the Central Asian Mobile Belt (from ocean to Continent), 131

Wang, 2009, Evolution of cakc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, Western Chinese Tianshan. Int. J. Earth Sci.

Whalen, 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 95, 407, 10.1007/BF00402202

Whalen, 2006, Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off, Lithos, 89, 377, 10.1016/j.lithos.2005.12.011

Wickham, 1995, Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: a key constraint of the origin of K-rich silicic magmas and the process of cratonization, J. Geophys. Res. 100/B8, 15,641, 10.1029/95JB00035

Wickham, 1996, Stable isotope study of anorogenic magmatism in East Central Asia, J. Petrol., 37, 1063, 10.1093/petrology/37.5.1063

Williams, 1998, U-Th-Pb Geochronology by Ion Microprobe. Applications of microanalytical techniques to understanding mineralizing processes, Rev. Econ. Geol., 7, 1

Yarmolyuk, 1997, Geochronology and geodynamic setting of the Angara–Vitim batholith, Petrologiya, 5, 451

Yarmolyuk, 1997, The Angara–Vitim batholith: the problem of geodynamics of batholith formation in the Central Asian fold belt, Geotektonika, 18

Yarmolyuk, 2001, Formation stages and sources of the peralkaline granitoid magmatism of the Northern Mongolia–Transbaikalia rift belt during the Permian and Triassic, Petrologiya, 9, 351

Yarmolyuk, 2002, The tectonomagmatic zoning, sources of igneous rocks, and geodynamics of the Early Mesozoic Mongolo-Transbaikalian area, Geotektonika, 42

Zanvilevich, 1985, The Mongolian–Transbaikalian Alkaline-Granitoid Province

Zanvilevich, 1991, Early Permian stage of granitoid magmatic activity in the Western Transbaikalia. Geologiya i Geofizika, Russian Geology and Geophysics, 32, 27

Zanvilevich, 1995, Genesis of alkaline and peralkaline syenite-granite series: the Kharitonovo pluton (Transbaikalia, Russia), J. Geol., 103, 127, 10.1086/629732

Zhao, 2008, Association of Neoproterozoic A-type and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment, Chem. Geol., 257, 1, 10.1016/j.chemgeo.2008.07.018

Zonenshain, 1990, Plate Tectonics of the USSR Territory