Sequence homology: A poor predictive value for profilins cross-reactivity

Clinical and Molecular Allergy - Tập 3 Số 1 - 2005
Mojtaba Sankian1, Abdolreza Varasteh1, Nazanin Pazouki1, Mahmoud Mahmoudi2
1Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
2Molecular biology Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran

Tóm tắt

Summary Background

Profilins are highly cross-reactive allergens which bind IgE antibodies of almost 20% of plant-allergic patients. This study is aimed at investigating cross-reactivity of melon profilin with other plant profilins and the role of the linear and conformational epitopes in human IgE cross-reactivity.

Methods

Seventeen patients with melon allergy were selected based on clinical history and a positive skin prick test to melon extract. Melon profilin has been cloned and expressed in E. coli. The IgE binding and cross-reactivity of the recombinant profilin were measured by ELISA and inhibition ELISA. The amino acid sequence of melon profilin was compared with other profilin sequences. A combination of chemical cleavage and immunoblotting techniques were used to define the role of conformational and linear epitopes in IgE binding. Comparative modeling was used to construct three-dimensional models of profilins and to assess theoretical impact of amino acid differences on conformational structure.

Results

Profilin was identified as a major IgE-binding component of melon. Alignment of amino acid sequences of melon profilin with other profilins showed the most identity with watermelon profilin. This melon profilin showed substantial cross-reactivity with the tomato, peach, grape and Cynodon dactylon (Bermuda grass) pollen profilins. Cantaloupe, watermelon, banana and Poa pratensis (Kentucky blue grass) displayed no notable inhibition. Our experiments also indicated human IgE only react with complete melon profilin. Immunoblotting analysis with rabbit polyclonal antibody shows the reaction of the antibody to the fragmented and complete melon profilin. Although, the well-known linear epitope of profilins were identical in melon and watermelon, comparison of three-dimensional models of watermelon and melon profilins indicated amino acid differences influence the electric potential and accessibility of the solvent-accessible surface of profilins that may markedly affect conformational epitopes.

Conclusion

Human IgE reactivity to melon profilin strongly depends on the highly conserved conformational structure, rather than a high degree of amino acid sequence identity or even linear epitopes identity.

Từ khóa


Tài liệu tham khảo

Machesky LM, Pollard TD: Profilin as a potential mediator of membrane-cytoskeleton communication. Trends Cell Biol. 1993, 3: 381-385. 10.1016/0962-8924(93)90087-H

Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O: Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991, 253: 557-560.

Wensing M, Akkerdaas JH, van Leeuwen WA, Stapel SO, Bruijnzeel-Koomen CA, Aalberse RC et al.: IgE to Bet v 1 and profilin: crossreactivity patterns and clinical relevance. J Allergy Clin Immunol. 2002, 110: 435-42. 10.1067/mai.2002.126380

Breiteneder H, Ebner C: Atopic allergens of plant foods. Curr Opin Allergy Clin Immunol. 2001, 1: 261-7. 10.1097/01.all.0000011024.76416.01

Scheurer S, Wangorch A, Nerkamp J, Skov PS, Ballmer-Weber B, Wütrich B et al.: Cross-reactivity within the profilin panallergen family investigated by comparison of recombinant profilins from pear (Pyr c 4), cherry (Pru ar 4) and celery (Api g 4) with birch pollen profilin Bet v 2. J Chromatogr B. 2001, 756: 315-25.

Van Ree R, Voitenko V, van Leeuwen , Aalberse RC: Profilin is a cross-reactive allergen in pollen and vegetable foods. Int Arch Allergy Immunol. 1992, 98: 97-104.

Vallier P, Ballard S, Harf R, Valenta R, Deviller P: Identification of profilin as an IgE-binding component in latex from Hevea brasiliensis: clinical implications. Clin Exp Allergy. 1995, 25: 332-9.

Ebner C, Jensen-Jarolim E, Leitner A, Breitender H: Characterization of allergens in plant-derived spices: Apiaceae spices, pepper (Piperaceae), and paprika (bell peppers, Solanaceae). Allergy. 1998, 53: 52-4.

Garcia Ortiz JC, Cosmes Martin P, Lopez Asunolo A: Melon sensitivity shares allergens with Plantago and grass pollens. Allergy. 1995, 50: 269-73.

Thorn KS, Christensen HE, Shigeta R, Huddler D, Shalaby L, Lindberg U, Chua NH, Schutt CE: The crystal structure of a major allergen from plants. Structure. 1997, 5: 19-32. 10.1016/S0969-2126(97)00163-9

Sankian M, Varasteh AR, Esmail N, Moghadam M, Pishnamaz R, Mahmoudi M: Melon allergy and allergenic cross reactivity of melon with other allergens. Iranian J Basic Med Sci. 2004, 4: 330-323.

Dreborg S: Skin tests used in type I allergy testing. Allergy. 1984, 39: 596-601.

Calabozo B, Barber D, Polo F: Purification and characterization of the main allergen of Plantago lanceolata pollen, Pla l. Clin Exp Allergy. 2001, 31: 322-330. 10.1046/j.1365-2222.2001.00985.x

Moller M, Kayma M, Vieluf D, Steinhart H: Determination and characterization of cross-reacting allergens in latex, avocado, banana, and kiwi fruit. Allergy. 1998, 53: 289-296.

Wallner M, Gruber P, Radauer C, Maderegger B, Susani M, Hoffmann-Sommergruber K, Ferreira F: Lab scale and medium scale production of recombinant allergens in Escherichia coli. Methods. 2004, 32: 219-226. 10.1016/j.ymeth.2003.08.004

Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 277: 680-685. 10.1038/227680a0.

Towbin H, Staehlin I, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979, 776: 4350-4.

Inglis AS: Cleavage at aspartic acid. Meth Enzymol. 1983, 91: 324-332.

Schagger H, von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987, 166: 368-379. 10.1016/0003-2697(87)90587-2

Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.

Zhorov BS: Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J Struct Chem. 1981, 22: 4-8. 10.1007/BF00745970.

Weiner SJ, Kollman PA, Case DA, Singh UC, Chio C, Alagona G, Profeta S, Weiner PK: A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 1984, 106: 765-784. 10.1021/ja00315a051.

Li Z, Scheraga HA: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA. 1987, 84: 6611-6615.

Chapman MD, Smith AM, Vailes LD, Arruda LK, Dhanaraj V, Pomés A: Recombinant allergens for diagnosis and therapy of allergic disease. J Allergy Clin Immunol. 2000, 106: 409-418. 10.1067/mai.2000.109832

Valenta R, Vrtala S, Laffer S, Spitzauer S, Kraft D: Recombinant allergens. Allergy. 1998, 53: 552-561.

Asero R, Mistrello G, Roncarolo D, de Vries SC, Gautier MF, Ciurana CL et al.: Lipid transfer protein: a panallergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol. 2001, 124: 67-69. 10.1159/000053671

Fujita C, Moriyama T, Ogawa T: Identifcation of cyclophilin as an IgE binding protein from carrots. Int Arch Allergy Immunol. 2001, 125: 44-50. 10.1159/000053795

Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC: The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure. 1997, 5: 33-4. 10.1016/S0969-2126(97)00164-0

Wiedemann P et al.: Molecular and structural analysis of a continuous birch profilin epitope defined by a monoclonal antibody. J Biol Chem. 1996, 271: 29915-29921. 10.1074/jbc.271.47.29915

Asturias JA, Gomez-Bayon N, Arilla MC, Sanchez-Pulido L, Valencia A, Martinez A: Molecular and structural analysis of the panallergen profilin B cell epitopes defined by monoclonal antibodies. Int Immunol. 2002, 14: 993-1001. 10.1093/intimm/dxf070

Rodriguez-Perez R, Crespo JF, Rodriguez J, Salcedo G: Profilin is a relevant melon allergen susceptible to pepsin digestion in patients with oral allergy syndrome. J Allergy Clin Immunol. 2003, 111: 634-9. 10.1067/mai.2003.74

Rihs HP, Chen Z, Rueff F, Petersen A, Rozynek P, Heimann H, Baur X: IgE binding of the recombinant allergen soybean profilin (rGly m 3) is mediated by conformational epitopes. J Allergy Clin Immunol. 1999, 104: 1293-301.

Crameri R: Correlating IgE reactivity with three-dimensional structure. Biochem J. 2003, 376: e1-e2. 10.1042/BJ20031363

Mueller GA, Smith AM, Chapman MD, Rule GS, Benjamin DC: Hydrogen exchange nuclear magnetic resonance spectroscopy mapping of antibody epitopes on the house dust mite allergen Der p 2. J Biol Chem. 2001, 276: 9359-9365. 10.1074/jbc.M010812200

Nodelman MI, Bowman GD, Lindberg U, Schutt CE: X-ray Structure determination of Human Profilin II: A Comparative Structural Analysis of Human Profilins. J Mol Biol. 1999, 294: 1271-1285. 10.1006/jmbi.1999.3318