Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families

Springer Science and Business Media LLC - Tập 9 - Trang 1-18 - 2009
Esben M Quistgaard1,2, Søren S Thirup1
1MIND Centre, Department of Molecular Biology, University of Aarhus, Århus C, Denmark
2Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm, Sweden

Tóm tắt

The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the blades are unusually far apart, which explains the surprisingly large diameter of the central tunnel of sortilin. We have provided new insight into the structure and function of the Asp-box motif and of Asp-box β-propellers, and expect that the classification and analysis presented here will prove helpful in interpreting future data on Asp-box proteins in general and on Asp-box β-propellers in particular.

Tài liệu tham khảo

Roggentin P, Rothe B, Kaper JB, Galen J, Lawrisuk L, Vimr ER, Schauer R: Conserved sequences in bacterial and viral sialidases. Glycoconj J 1989, 6(3):349–353. 10.1007/BF01047853 Crennell SJ, Garman EF, Laver WG, Vimr ER, Taylor GL: Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci USA 1993, 90(21):9852–9856. 10.1073/pnas.90.21.9852 Copley RR, Russell RB, Ponting CP: Sialidase-like Asp-boxes: sequence-similar structures within different protein folds. Protein Sci 2001, 10(2):285–292. 10.1110/ps.31901 Crennell S, Garman E, Laver G, Vimr E, Taylor G: Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 1994, 2(6):535–544. 10.1016/S0969-2126(00)00053-8 Gaskell A, Crennell S, Taylor G: The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 1995, 3(11):1197–1205. 10.1016/S0969-2126(01)00255-6 Newstead SL, Potter JA, Wilson JC, Xu G, Chien CH, Watts AG, Withers SG, Taylor GL: The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J Biol Chem 2008, 283(14):9080–9088. 10.1074/jbc.M710247200 Xu G, Li X, Andrew PW, Taylor GL: Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008, 64(Pt 9):772–775. 10.1107/S1744309108024044 Xu G, Potter JA, Russell RJ, Oggioni MR, Andrew PW, Taylor GL: Crystal structure of the NanB sialidase from Streptococcus pneumoniae. J Mol Biol 2008, 384(2):436–449. 10.1016/j.jmb.2008.09.032 Xu G, Ryan C, Kiefel MJ, Wilson JC, Taylor GL: Structural Studies on the Pseudomonas aeruginosa Sialidase-Like Enzyme PA2794 Suggest Substrate and Mechanistic Variations. J Mol Biol 2009, 386(3):828–40. 10.1016/j.jmb.2008.12.084 Buschiazzo A, Tavares GA, Campetella O, Spinelli S, Cremona ML, Paris G, Amaya MF, Frasch AC, Alzari PM: Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 2000, 19(1):16–24. 10.1093/emboj/19.1.16 Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM: The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 2002, 10(4):757–768. 10.1016/S1097-2765(02)00680-9 Luo Y, Li SC, Chou MY, Li YT, Luo M: The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha2-->3Gal specificity. Structure 1998, 6(4):521–530. 10.1016/S0969-2126(98)00053-7 Chavas LM, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, Monti E, Wakatsuki S: Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition. J Biol Chem 2005, 280(1):469–475. Stummeyer K, Dickmanns A, Muhlenhoff M, Gerardy-Schahn R, Ficner R: Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 2005, 12(1):90–96. 10.1038/nsmb874 Chaudhuri I, Soding J, Lupas AN: Evolution of the beta-propeller fold. Proteins 2008, 71(2):795–803. 10.1002/prot.21764 Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y: Tandem repeat of a seven-bladed beta-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 2004, 12(7):1209–1217. 10.1016/j.str.2004.04.020 Martinez-Fleites C, Guerreiro CI, Baumann MJ, Taylor EJ, Prates JA, Ferreira LM, Fontes CM, Brumer H, Davies GJ: Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 2006, 281(34):24922–24933. 10.1074/jbc.M603583200 Jorgensen MU, Emr SD, Winther JR: Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur J Biochem 1999, 260(2):461–469. 10.1046/j.1432-1327.1999.00176.x Quistgaard EM, Madsen P, Groftehauge MK, Nissen P, Petersen CM, Thirup SS: Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain. Nat Struct Mol Biol 2009, 16(1):96–98. 10.1038/nsmb.1543 Nogi T, Yasui N, Hattori M, Iwasaki K, Takagi J: Structure of a signaling-competent reelin fragment revealed by X-ray crystallography and electron tomography. EMBO J 2006, 25(15):3675–3683. 10.1038/sj.emboj.7601240 Russell RB: Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J Mol Biol 1998, 279(5):1211–1227. 10.1006/jmbi.1998.1844 Chien CH, Shann YJ, Sheu SY: Site-directed mutations of the catalytic and conserved amino acids of the neuraminidase gene, nanH, of Clostridium perfringens ATCC 10543. Enzyme Microb Technol 1996, 19(4):267–276. 10.1016/0141-0229(95)00245-6 Paoli M: Protein folds propelled by diversity. Prog Biophys Mol Biol 2001, 76(1–2):103–130. 10.1016/S0079-6107(01)00007-4 Corfield T: Bacterial sialidases–roles in pathogenicity and nutrition. Glycobiology 1992, 2(6):509–521. 10.1093/glycob/2.6.509 Pereira ME, Zhang K, Gong Y, Herrera EM, Ming M: Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect Immun 1996, 64(9):3884–3892. Nagamune K, Acosta-Serrano A, Uemura H, Brun R, Kunz-Renggli C, Maeda Y, Ferguson MA, Kinoshita T: Surface sialic acids taken from the host allow trypanosome survival in tsetse fly vectors. J Exp Med 2004, 199(10):1445–1450. 10.1084/jem.20030635 Miyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, Yamanami H, Fujiya T: Human sialidase as a cancer marker. Proteomics 2008, 8(16):3303–3311. 10.1002/pmic.200800248 Miyagi T, Wada T, Yamaguchi K: Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 2008, 1780(3):532–537. Thomas GH: Disorders of Glycoprotein Degradation: α-Mannosidosis, β-Mannosidosis, Fucosidosis, and Sialidosis. In The metabolic and molecular bases of inherited disease. Edited by: Beaudet AL, Sly SD, Valle D. New York: McGraw-Hill; 2001:3507–3534. Willnow TE, Petersen CM, Nykjaer A: VPS10P-domain receptors – regulators of neuronal viability and function. Nat Rev Neurosci 2008, 9(12):899–909. 10.1038/nrn2516 Sibanda BL, Blundell TL, Thornton JM: Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 1989, 206(4):759–777. 10.1016/0022-2836(89)90583-4 Hutchinson EG, Thornton JM: A revised set of potentials for beta-turn formation in proteins. Protein Sci 1994, 3(12):2207–2216. 10.1002/pro.5560031206 Yang K, Eyobo Y, Brand LA, Martynowski D, Tomchick D, Strauss E, Zhang H: Crystal structure of a type III pantothenate kinase: insight into the mechanism of an essential coenzyme A biosynthetic enzyme universally distributed in bacteria. J Bacteriol 2006, 188(15):5532–5540. 10.1128/JB.00469-06 Sevcik J, Hill CP, Dauter Z, Wilson KS: Complex of ribonuclease from Streptomyces aureofaciens with 2'-GMP at 1.7 A resolution. Acta Crystallogr D Biol Crystallogr 1993, 49(Pt 2):257–271. 10.1107/S0907444992007261 Okorokov AL, Panov KI, Offen WA, Mukhortov VG, Antson AA, Karpeisky MY, Wilkinson AJ, Dodson GG: RNA cleavage without hydrolysis. Splitting the catalytic activities of binase with Asn101 and Thr101 mutations. Protein Eng 1997, 10(3):273–278. 10.1093/protein/10.3.273 Pace CN, Horn G, Hebert EJ, Bechert J, Shaw K, Urbanikova L, Scholtz JM, Sevcik J: Tyrosine hydrogen bonds make a large contribution to protein stability. J Mol Biol 2001, 312(2):393–404. 10.1006/jmbi.2001.4956 Itoh K, Naganawa Y, Matsuzawa F, Aikawa S, Doi H, Sasagasako N, Yamada T, Kira J, Kobayashi T, Pshezhetsky AV, Sakuraba H: Novel missense mutations in the human lysosomal sialidase gene in sialidosis patients and prediction of structural alterations of mutant enzymes. J Hum Genet 2002, 47(1):29–37. 10.1007/s10038-002-8652-7 Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382(Pt 3):769–781. Garcia-Hernandez E, Zubillaga RA, Rodriguez-Romero A, Hernandez-Arana A: Stereochemical metrics of lectin-carbohydrate interactions: comparison with protein-protein interfaces. Glycobiology 2000, 10(10):993–1000. 10.1093/glycob/10.10.993 Weis WI, Drickamer K: Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 1996, 65: 441–473. 10.1146/annurev.bi.65.070196.002301 Moustafa I, Connaris H, Taylor M, Zaitsev V, Wilson JC, Kiefel MJ, von Itzstein M, Taylor G: Sialic acid recognition by Vibrio cholerae neuraminidase. J Biol Chem 2004, 279(39):40819–40826. 10.1074/jbc.M404965200 Newstead SL, Watson JN, Bennet AJ, Taylor G: Galactose recognition by the carbohydrate-binding module of a bacterial sialidase. Acta Crystallogr D Biol Crystallogr 2005, 61(Pt 11):1483–1491. 10.1107/S0907444905026132 Fulop V, Jones DT: Beta propellers: structural rigidity and functional diversity. Curr Opin Struct Biol 1999, 9(6):715–721. 10.1016/S0959-440X(99)00035-4 Russell RB, Sasieni PD, Sternberg MJ: Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 1998, 282(4):903–918. 10.1006/jmbi.1998.2043 Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C: Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J 2004, 23(12):2325–2335. 10.1038/sj.emboj.7600243 Paoli M, Anderson BF, Baker HM, Morgan WT, Smith A, Baker EN: Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains. Nat Struct Biol 1999, 6(10):926–931. 10.1038/13294 Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W: Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J 1999, 18(9):2313–2322. 10.1093/emboj/18.9.2313 Murzin AG: Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 1992, 14(2):191–201. 10.1002/prot.340140206 Stevens TJ, Paoli M: RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of beta-propeller domains. Proteins 2008, 70(2):378–387. 10.1002/prot.21521 Nikkhah M, Jawad-Alami Z, Demydchuk M, Ribbons D, Paoli M: Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. Biomol Eng 2006, 23(4):185–194. 10.1016/j.bioeng.2006.02.002 Coutinho PM, Henrissat B: Carbohydrate-active enzymes: an integrated database approach. In Recent advances in Carbohydrate Bioenginerring. Edited by: Gilbert HJ, Davies GJ, Henrissat B, Svensson B. Cambridge: Royal Society of Chemistry; 1999:3–12. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A: Pfam: clans, web tools and services. Nucleic Acids Res 2006, (34 Database):D247–51. 10.1093/nar/gkj149 Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, (37 Database):D211–5. 10.1093/nar/gkn785 Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA: Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 2008, 70(3):611–625. 10.1002/prot.21688 Kleywegt GJ: Recognition of spatial motifs in protein structures. J Mol Biol 1999, 285(4):1887–1897. 10.1006/jmbi.1998.2393 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235–242. 10.1093/nar/28.1.235 DeLano WL: The PyMol User's Manual. CA, USA, San Carlos: DeLano Scientific; 2002. Laskowski RA: PDBsum new things. Nucleic Acids Res 2009, (37 Database):D355–9. 10.1093/nar/gkn860 Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM: MUSTANG: a multiple structural alignment algorithm. Proteins 2006, 64(3):559–574. 10.1002/prot.20921 Clamp M, Cuff J, Searle SM, Barton GJ: The Jalview Java alignment editor. Bioinformatics 2004, 20(3):426–427. 10.1093/bioinformatics/btg430