Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism
Tóm tắt
Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55). Sequence analysis demonstrated that PhaC1P.sp USM 4–55 lacked similarity with all known structures in databases. PSI-BLAST and HMM Superfamily analyses demonstrated that this enzyme belongs to the alpha/beta hydrolase fold family. Threading approach revealed that the most suitable template to use was the human gastric lipase (PDB ID: 1HLG). The superimposition of the predicted PhaC1P.sp USM 4–55 model with 1HLG covering 86.2% of the backbone atoms showed an RMSD of 1.15 Å. The catalytic residues comprising of Cys296, Asp451 and His479 were found to be conserved and located adjacent to each other. In addition to this, an extension to the catalytic mechanism was also proposed whereby two tetrahedral intermediates were believed to form during the PHA biosynthesis. These transition state intermediates were further postulated to be stabilized by the formation of oxyanion holes. Based on the sequence analysis and the deduced model, Ser297 was postulated to contribute to the formation of the oxyanion hole. The 3D model of the core region of PhaC1P.sp USM 4–55 from residue 267 to residue 484 was developed using computational techniques and the locations of the catalytic residues were identified. Results from this study for the first time highlighted Ser297 potentially playing an important role in the enzyme's catalytic mechanism.
Tài liệu tham khảo
Rehm BHA, Steinbüchel A: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 1999, 25: 3-19. 10.1016/S0141-8130(99)00010-0
Rehm BHA, Steinbüchel A: . In Biopolymer. Edited by: Steinbüchel A and Doi Y. Heidelberg, Wiley-VCH; 2001:199-200.
Taguchi S, Nakamura H, Kichise T, Tsuge T, Yamato I, Doi Y: Production of Polyhydroxyalkanoate (PHA) from Renewable Carbon Sources in Recombinant Ralstonia eutropha Using Mutants of Original PHA Synthase. Biochem Eng J 2003, 16: 107-113. 10.1016/S1369-703X(03)00027-5
Lagenbach S, Rehm BHA, Steinbüchel A: Functional Expresion of The PHA Synthase Gene phaC1 from Pseudomonas aeruginosa in Escherichia coli Results in Poly (3-hydroxyalkanoate) Synthesis. FEMS Microb Lett 1997, 303-309.
Kichise T, Fukui T, Yoshida Y, Doi Y: Biosynthesis of Polyhydroxyalkanoates (PHA) by Recombinant Ralstonia eutropha and Effects of PHA Synthase Activity on in Vivo PHA Biosynthesis. Int J Biol Macromol 1999, 25: 69-77. 10.1016/S0141-8130(99)00017-3
Rehm BHA, Qi Q, Beermann BB, Hinz H, Steinbüchel A: Matrix-assisted In vitro Refolding of Pseudomonas aeruginosa Class II Polyhydroxyalanoate Synthase from Inclusion Bodies Produced in Recombinant Escherichia coli . Biochem J 2001, 358: 263-268. 10.1042/0264-6021:3580263
Amara AA, Steinbüchel A, Rehm BHA: In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: Isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 2002, 59: 477-482. 10.1007/s00253-002-1035-3
Amara AA, Rehm BHA: Replacement of the catalytic nucleophile cysteine-296 by serine in classII polyhydroxyalkanoate synthase from Pseudomonas aeruginosa -mediated synthesis of a new polyester: Identification of catalytic residues. Biochem J 2003, 374: 413-421. 10.1042/BJ20030431
Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J: Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: Characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 2000, 39: 3927-3936. 10.1021/bi9928086
Rehm BH, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A: Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 2002, 1594: 178-190.
Baharuddin A: Cloning and characterization of polyhydroxyalkanoic acid (PHA) synthase gene from Pseudomonas sp. USM4-55. In MSc Thesis. Biological Sciences Department, Penang, Universiti Sains Malaysia; 2001:47-66.
Bairoch A, Boekmann B: The SWISS-PROT protein sequence data bank. Nuc Acids Res 1992, 20: 2019-2022.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nuc Acids Res 2000, 28: 235-242. 10.1093/nar/28.1.235
Wu C.H, Yeh L.L, Huang H, al. : The protein information resource. Nuc Acids Res 2003, 31: 345-347. 10.1093/nar/gkg040
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215: 403-410. 10.1006/jmbi.1990.9999
Altschul SF, Madden TL, Schaffer AA et al: Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nuc Acids Res 1997, 25: 3389-3402. 10.1093/nar/25.17.3389
Pearson WR, Wood T, Zhang Z, Miller W: Comparison of DNA sequences with protein sequences. Genomics 1997, 46: 24-36. 10.1006/geno.1997.4995
Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: Improving The Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-specific Gap Penalties and Weight Matric Choice. Nuc Acids Res 1994, 22: 4673-4680.
Madera M, Vogel C, Kummerfield SK, Chotia C, Gough J: The SUPERFAMILY Database in 2004: Additions and Improvements. Nuc Acids Res 2004, 32: 235-239. 10.1093/nar/gkh117
McGuffin LJ, Bryson K, Jones DT: The PSIPRED Protein Structure Prediction Server. Bioinformatics 2000, 15: 404-405. 10.1093/bioinformatics/16.4.404
Rost B, Liu J: The Predictprotein Server. Nucl Acids Res 2003, 31: 3300-3304. 10.1093/nar/gkg508
Rost B: Predicting One-dimensional Protein Structure by Profile Based Neural Networks. Methods in Enzymology 1996, 266: 525-539.
Pollastri G, Przybylski D, Rost B, Baldi P: Improving the Prediction of Protein Secondary Structure in Three and Eight Classes Using Recurrent Neural Networks and Profiles. Proteins 2002, 47: 228-235. 10.1002/prot.10082
Cuff JA, Barton GJ: Application of Enhanced Multiple Sequence Alignment Profiles To Improve Protein Secondary Structure Prediction. Proteins 1999, 40: 502-511. Publisher Full Text 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
Jones DT: An Efficient And Reliable Protein Fold Recognition Method For Genomic Sequences. J Mol Biol 1999, 287: 797-815. 10.1006/jmbi.1999.2583
Kelley LA, MacCallum RM, Sternberg MJE: Enhanced Genome Annotation Using Structural Profiles in The Program 3DPSSM. J Mol Biol 2000, 299: 499-520. 10.1006/jmbi.2000.3741
Shi J, Blundell TL, Mizuguchi K: Sequence-structure Homology Recognition Using Environment-specific Substitution Tables and Structure-dependent Gap Penalties. J Mol Biol 2001, 310: 243-257. 10.1006/jmbi.2001.4762
Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234: 779-815. 10.1006/jmbi.1993.1626
Laskowski R A, MacArthur M W, Moss D S, Thornton J M: PROCHECK: A Program To Check The Stereochemical Quality of Protein Strcutures. J Appl Cryst 1993, 26: 283-291. 10.1107/S0021889892009944
Luthy R, Bowie JU, Eisenberg D: Assessment of Protein Models With three-dimensional profiles. Nature 1992, 356: 83-85. 10.1038/356083a0
Pontius J, Richelle J, Wodak SJ: Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 1996, 264: 121-136. 10.1006/jmbi.1996.0628
Hooft RWW, Vriend G, Sander C, Abola EE: Errors in protein structures. Nature 1996, 381: 272-272. 10.1038/381272a0
Colovos C, Yeates TO: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993, 2: 1511-1519.
Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 2577-2637. 10.1002/bip.360221211
Accelrys Softwares[http://www.accelrys.com]
Results[http://hawk.usm.my/nurul]
Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J: The alpha/beta Hydrolase Fold. Protein Eng 1992, 5: 197-211.
Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J: Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus : evidence for a required posttranslational modification for catalytic activity. Biochemistry 1994, 33: 9311-9320. 10.1021/bi00197a035
Hoppensack A, Rehm BHA, Steinbüchel A: Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha : Generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J Bacteriol 1999., 181:
Taguchi S, Maehara A, Takase K, Nakahara M, Nakamura H, Doi Y: Analysis of mutational effects of polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microb Lett 2001, 198: 65-71. 10.1111/j.1574-6968.2001.tb10620.x
Roussel A, Canaan S, Verger R, Cambillau C: Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest. J Biol Chem 1999, 274: 16995. 10.1074/jbc.274.24.16995
MacKerell A.D Jr., Bashford D, Bellott M, Dunbrack R.L, Evanseck J.D, Field M.J, Fischer S, Gao J, al. : All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J Phys Chem B 1998, 102: 3586-3616. 10.1021/jp973084f
Jia Y, Yuan W, Wodzinska J, Park C, Sinskey AJ, Stubbe J: Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha : Class I and III synthases share a similar catalytic mechanism. Biochemistry 2001, 40: 1011-1019. 10.1021/bi002219w
Muh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J: PHA synthase from Chromatium vinosum : Cysteine 149 is involved in covalent catalysis. Biochemistry 1999, 38: 826-837. 10.1021/bi9818319
Menard R, Storer AC: Oxyanion hole interactions in serine and cysteine proteases. Biol Chem Hoppe-Seyler 1992, 373: 393-400.
Menard R, Carriere J, Laflamme P, Plouffe C, Khouri HE, Vernet T, Tessier DC, Thomas DY, Storer AC: Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 1991, 30: 8924-8928. 10.1021/bi00101a002
Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M: Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 1993, 268: 12843-12847.
Tilbeurgh HV, Egloff M, Martinez C, Rugani N, Verger R, Cambillau C: Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 1993, 362: 814-820. 10.1038/362814a0
Menard R, Plouffe C, Laflamme P, Vernet T, Tessier DC, Thomas DY, Storer AC: Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain. Biochemistry 1995, 34: 464-471. 10.1021/bi00002a010
Zheng Y, Bruice TC: Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain? Proc Natl Acad Sci USA 1997, 94: 4285-4288. 10.1073/pnas.94.9.4285
Cui J, Marankan F, Fu W, Crich D, Mesecar A, Johnson ME: An oxyanion-hole selective serine protease inhibitor in complex with trypsin. Bioorganic & Medicinal Chem 2002, 10: 41-46. 10.1016/S0968-0896(01)00259-0