Sequence Variation and Comparison of the 5S rRNA Sequences in Allium Species and their Chromosomal Distribution in Four Allium Species

Journal of Plant Biology - Tập 55 - Trang 15-25 - 2011
Jae-Han Son1, Kyong-Cheul Park2, Sung-Il Lee1, Eun-Jin Jeon3, Hyun-Hee Kim3, Nam-Soo Kim1,2
1Department of Molecular Biosciences, BK21 Training Team, Kangwon National University, Chuncheon, South Korea
2Institute of Biosciences and Biotechnology, Kangwon National University, Chuncheon, South Korea
3Department of Life Science, Sahmyook University, Seoul, South Korea

Tóm tắt

The gene structure and sequence diversity of 5S rRNA genes were analyzed in 13 Allium species. While the lengths and sequences of the coding gene segments were conserved, the spacers were highly variable and could be characterized as either short (213–404 bp) or long (384–486 bp) spacers. The short spacers were further classified into five subtypes (SS-I to SS-V) and the long spacers into four subtypes (LS-I to LS-IV). The short spacers were more conserved than were the long spacers. There was a sequence duplication of 85 bp in SS-III that distinguished it from SS-II. The coding sequences of the 5S rRNA genes started with CGG and ended with either CCC or TCC. Both long and short spacers started with TTTT at their 5′-ends. However, the long spacers ended with a 3′-TGA sequence, whereas the short spacers terminated with various sequences, such as TTA, ATA, or TGA. GC content ranged from 27 to 41% in whole repeats, and the GC content in the long spacers was lower than in the short spacers. The nucleotide diversity in the coding regions was lower than in the spacers, and the nucleotide diversity in the coding regions did not correlate with that of the spacers. FISH analysis confirmed that each Allium species has either short spacers or long spacers. Although chromosomal locations of the 5S rRNA genes in Allium wakegi confirmed the allodiploid nature of A. cepa and A. fistulosum, spacer sequences revealed the absence of SS-II in A. cepa and in A. wakegi. The current study demonstrated that the 5S rRNA genes diverged in early stages in Allium species differentiation except of the allodiploid A. wakegi.

Tài liệu tham khảo

Appel R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK (ed) DNA systematic, vol II. CRC Press, Boca Raton, FL, pp 81–155 Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, USA, pp 36–61 Bogdanov AA, Dontssova PA, Dokudovskaya SS, Lavrik IN (1995) Structure and function of 5S rRNA in the ribosome. Biochem Cell Biol 73:869–876 Cloix C, Tutois S, Yukawa Y, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2000) Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogenous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 12:132–144 Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705 Drouin G, Moniz de Sa M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. MolBiolEvol 12:481–493 Dvořák J, Zhang HB, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016 Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485 Friesen N, Fritsch R, Blattner FR (2006) Phylogeny and new intragenic classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22:372–395 Fritsch RM, Blattner FR, Gurushidze M (2010) New classification of Allium L. Subg. Melanocrommyum (Webb &Berthel) Rouy (Alliaceae) based on molecular and morphological characters. Phyton 49:145–220 Funari SS, Rapp G, Perbandt M, Dierks K, Vallazza M, Betzel C, Erdmann VA, Svergun DI (2000) Structure of free Thermus flavus 5S rRNA at 1.3 nm resolution from synchrotron X-ray solution scattering. J Biol Chem 275:31283–31288 Harvey MJ (1995) Onion and other cultivated alliums. Allium spp. (Liliaceae). In Evolution of crop plants, Smartt J and Simmonds NW, eds., 2nd ed., Wiley Pub.Co. New York pp. 344–350 Hizume M (1994) Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Jpn J Genet 69:407–415 Hori H, Osawa S (1986) Evolutionary change in the 5S rRNA secondary structure and a phylogenic tree of 352 5S rRNA species. Biosystems 19:163–172 Jeffrey AJ, Tamaki K, MacLeod A, Monckton DG, Neil DL, Armour JAL (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136–145 Kellogg E, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140:325–343 Kim N-S, Kuspira J, Armstrong K, Bhambhini R (1993) Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VIII. Localization of rDNAs and characterization of 5S rRNA genes. Genome 36:77–86 Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dintsova OA, Dinman JD (2005) Structural and functional analysis of 5S rRNA in Sacchromyces cereviceae. Mol Gen Genomics 274:235–247 Lee SH, Seo BB (1997) Chromosomal localization of 5S and 18S–26S rRNA genes using fluorescence in situ hybridization in Allium wakegi. Kor J Genet 19:19–26 Lee SH, Do GS, Seo BB (1999) Chromosomal localization of 5S rRNA gene loci and implications for relationships within Allium complex. Chrom Res 7:89–93 Li Q-Q, Zhou S-D, He X-J, Yu Y, Zhang Y-C, Wei X-Q (2010) Phylogeny and biogeography of Allium (Armaryllidaceae: Alliaceae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals Bot 106:709–733 Liu Z-L, Zhang D, Wang X-Q, Ma X-F, Wang X-R (2003) Intragenomic and intergenomic 5S rRNA sequence variation in five Asian pines. Am J Bot 90:17–24 Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273 Nielson JN, Hallenburg C, Frederiksen S, Sørensen PD, Lombolt B (1993) Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 21:3631–3636 Park YK, Park KC, Kim N-S (2000) Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 10:18–24 Park HM, Jeon EJ, Waminal NE, Shin KS, Kweon SJ, Park BS, Suh SS, Kim HH (2010) Detection of transgenes in three genetically modified rice lines by fluorescence in situ hybridization. Genes Genom 32:527–531 Ricroch A, Yockteng R, Brown SC, Nadot S (2005) Evolution of genome size across some cultivated Allium species. Genome 48:511–520 Sanderson MJ, Doyle JJ (1992) Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. SystBiol 41:4–17 Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5S DNA. Pl Syst Evol 183:169–181 Schneeberger RG, Creissen GP, Cullis CA (1989) Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissimum. Gene 83:75–84 Scoles GJ, Gill BS, Xin Z-Y, Klarke BC, McIntyre CL, Chapman C, Appels R (1987) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Pl Syst Evol 160:105–122 Seo JH, Seo BB (2010) Independent chromosomal localization of two different 5S rDNA of Allium victorialis var. plathphyllum by sequential fluorescence in situ hybridization in accordance with sequence polymorphism. Genes Genom 32:129–135 Seo BB, Lee SH, Mukai Y (1997) Physical mapping of 5S and 18S–26S ribosomal RNA gene familes in Allium victorialis var. platyphyllum. J Plant Biol 40:132–137 Shibata F, Hizume M (2002) Evolution of 5S rDNA units and their chromosomal locations in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105:167–172 Smith MW, Meskaukas A, Wang P, Sergiev PV, Dinman JD (2001) Saturation mutagenesis of 5S rRNA in Saccharomyces cereviceae. Mol Cell Biol 21:8264–8275 Son J-H, Park K-C, Kim T-W, Park Y-J, Kang J-H, Kim N-S (2010) Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species. Genes Genom 32:165–172 Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30:176–178 Tashiro Y (1984) Genome analysis of Allium wakegi Araki. J Jpn Hort Sci 52:399–407 Tyler BM (1987) Transcription of Neurospora crassa 5S rRNA gene requires a TATA box and three internal elements. J Mol Biol 196:801–811