SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging

Huy Phan1, Fernando Andreotti2, Navin Cooray2, Oliver Y. Chén2, Maarten De Vos2
1School of Computing, University of Kent, Kent, U.K.
2Institute of Biomedical Engineering, University of Oxford, Oxford, U.K.

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1111/jsr.12169

10.3115/v1/D14-1179

silver, 2016, Mastering the game of Go with deep neural networks and tree search, Nature, 529, 484, 10.1038/nature16961

collobert, 2011, Natural language processing (almost) from scratch, J Mach Learn Res, 12, 2493

bojarski, 2016, End to End Learning for Self-Driving Cars

10.1093/sleep/zsy041

10.1162/neco.1997.9.8.1735

levine, 2016, End-to-end training of deep visuomotor policies, J Mach Learn Res, 17, 1

10.1038/nature14236

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc NIPS, 1097

liang, 2011, A rule-based automatic sleep staging method, Proc EBMC, 6067

10.1016/j.compbiomed.2015.01.017

10.3390/e18090272

2006, Sleep Disorders and Sleep Deprivation An Unmet Public Health Problem

10.1038/nature04285

10.1109/MPUL.2012.2216717

10.1155/2012/107046

10.3389/fnins.2015.00438

10.1109/EMBC.2018.8512480

10.1007/s10439-015-1444-y

10.1109/EMBC.2018.8512286

10.1109/TNSRE.2017.2733220

chung, 2014, Empirical evaluation of gated recurrent neural networks on sequence modeling

abadi, 2016, Tensorflow Large-scale machine learning on heterogeneous distributed systems

cooray, 2018, Detection of REM sleep behaviour disorder by automated polysomnography analysis

2014, The International Classification of Sleep Disorders—Third Edition (ICSD-3)

10.21437/Interspeech.2017-101

kingma, 2015, Adam: a method for stochastic optimization, Proc ICLR, 1

cooijmans, 2016, Recurrent batch normalization

srivastava, 2014, Dropout: A simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929

tsinalis, 2016, Automatic sleep stage scoring with single-channel EEG using convolutional neural networks

mikkelsen, 2018, Personalizing deep learning models for automatic sleep staging

10.1109/EMBC.2014.6944758

10.1038/s41467-018-07229-3

10.1109/TNSRE.2018.2813138

10.1109/EMBC.2018.8512214

andreotti, 2018, Visualising convolutional neural network decisions in automated sleep scoring, Proc Joint Workshop Artif Intell Health (AIH), 70

mikkelsen, 2018, Machine-learning-derived sleep–wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy, J Sleep Res, 13, 12786e

10.1513/AnnalsATS.201605-342BC

10.1109/JSEN.2015.2471183

10.1109/TBME.2013.2264956

iber, 2007, The AASM Manual for the scoring of sleep and associated events Rules terminology and technical specifications

krieger, 2017, Social and Economic Dimensions of Sleep Disorders An Issue of Sleep Medicine Clinics E-Book

10.1109/TBME.2005.869773

10.1016/0013-4694(69)90021-2

10.1109/TBME.2018.2872652

10.1109/TIM.2018.2799059

bahdanau, 2015, Neural machine translation by jointly learning to align and translate

10.1109/TNSRE.2017.2721116

10.23919/EUSIPCO.2018.8553483

10.1109/EMBC.2018.8513145

10.18653/v1/D15-1166

10.1109/TASLP.2017.2690564

10.1016/j.jneumeth.2015.01.022

10.1109/EMBC.2015.7319762

10.1109/ACCESS.2017.2687041

10.3389/fnins.2014.00263