Septin structure and filament assembly

Biophysical Reviews - Tập 9 Số 5 - Trang 481-500 - 2017
Napoleão Fonseca Valadares1, H.M. Pereira2, Ana Paula Ulian de Araújo2, R.C. Garratt2
1Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
2Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Angelis D, Karasmanis EP, Bai X, Spiliotis ET (2014) In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding. PLoS One 9(5):e96390. https://doi.org/10.1371/journal.pone.0096390

Bai X, Bowen JR, Knox TK, Zhou K, Pendziwiat M, Kuhlenbäumer G, Sindelar CV, Spiliotis ET (2013) Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. J Cell Biol 203:895–905

Bertin A, McMurray MA, Grob P, Park SS, Garcia G 3rd, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci USA 105:8274–8279. https://doi.org/10.1073/pnas.0803330105

Bourne HR (1997) The arginine finger strikes again. Nature 389:673–674

Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T (2016) Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 193:157–161. https://doi.org/10.1016/j.jsb.2016.01.004

Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS (2014) Septin assemblies form by diffusion-driven annealing on membranes. Proc Natl Acad Sci USA 111(6):2146–2151. https://doi.org/10.1073/pnas.1314138111

Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213(1):23–32. https://doi.org/10.1083/jcb.201512029

Byers B, Goetsch L (1976) A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69(3):717–721

Damalio JCP, Garcia W, Alves Macêdo JN, de Almeida MI, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP (2012) Self assembly of human septin 2 into amyloid filaments. Biochimie 94:628–636

Fung KYY, Dai L, Trimble WS (2014) Cell and molecular biology of septins. Inl Rev Cell Mol Biol 310:289–339

Garcia W, de Araújo APU, Oliveira Neto M, Ballestero MRM, Polikarpov I, Tanaka M, Tanaka T, Garratt RC (2006) Dissection of a human septin: definition and characterization of distinct domains within human SEPT4. Biochemistry 45(46):13918–13931

Garcia W, Ulian de Araújo AP, Lara F, Foguel D, Tanaka M, Tanaka T, Garratt RC (2007) An intermediate in the thermal unforlding of the GTPase domain of human septin 4 (SEPT4/Bradeion-β) forms amyloid filaments in vitro. Biochemistry 46:11101–11109

Garcia G 3rd, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J (2016) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212:515–529. https://doi.org/10.1083/jcb.201511029

Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276

Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439. https://doi.org/10.1126/science.1191054

Huang YW, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) GTP binding and hydrolysis kinetics of human septin 2. FEBS J 273:3248–3260

Kim MS, Froese CD, Estey MP, Trimble WS (2011) SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol 195:815–826. https://doi.org/10.1083/jcb.201106131

Kinoshita M (2003) Assembly of mammalian septins. J Biochem 134:491–496

Kinoshita N, Kimura K, Matsumoto N, Watanabe M, Fukaya M, Ide C (2004) Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cells 9:1–14

Lee KI, Im W, Pastor RW (2014) Langevin dynamics simulations of charged model phosphatidylinositol lipids in the presence of diffusion barriers: toward an atomic level understanding of corralling of PIP2 by protein fences in biological membranes. BMC Biophys 7:13. https://doi.org/10.1186/s13628-014-0013-3

Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C, Maltais LJ, McKenzie L, Mitchison TJ, Nishikawa T, Noda M, Petty EM, Peifer M, Pringle JR, Robinson PJ, Roth D, Russell SE, Stuhlmann H, Tanaka M, Tanaka T, Trimble WS, Ware J, Zeleznik-Le NJ, Zieger B (2002) Mammalian septins nomenclature. Mol Biol Cell 13(12):4111–4113

Macedo JN, Valadares NF, Marques IA, Ferreira FM, Damalio JC, Pereira HM, Garratt RC, Araujo AP (2013) The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 450:95–105. https://doi.org/10.1042/BJ20120851

Marques IA, Valadares NF, Garcia W, Damalio JC, Macedo JN, de Araújo AP, Botello CA, Andreu JM, Garratt RC (2012) Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochem Biophys 62:317–328. https://doi.org/10.1007/s12013-011-9307-0

McMurray M (2014) Lean forward: Genetic analysis of temperature-sensitive mutants unfolds the secrets of oligomeric protein complex assembly. Bioessays 36:836–846

McMurray MA (2016) Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization. Methods Cell Biol 136:99–116. https://doi.org/10.1016/bs.mcb.2016.03.012

Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nature Rev 13:183–194

Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, Sartori A, Konoshita M, Lecuit M, Cossart P (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8:433–444

Nagata K, Asano T, Nozawa Y, Inagaki M (2004) Biochemical and c cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279:55895–55904

Nakahira M, Macedo JN, Seraphim TV, Cavalcante N, Souza TA, Damalio JC, Reyes LF, Assmann EM, Alboghetti MR, Garratt RC et al (2010) A draft of the human septin interactome. PLoS One 5:e13799

Neubauer K, Zeiger B (2017a) The mammalian septin interactome. Front Cell Dev Biol 5:3. https://doi.org/10.3389/fcell.2017.00003

Neubauer K, Zeiger B (2017b) The mammalian septin interactome. Front Cell Dev Biol 5:1–9

Pan F, Malmberg RL, Momany M (2007) Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 7:103

Pinto APA, Pereira HM, Zeraik AE, Ciol H, Ferreira FM, Brandão-Neto J, DeMarco R, Navarro MVAS, Risi C, Galkin VE, Garratt RC, Araujo APU (2017) Filaments and fingers: Novel structural aspects of the single septin from Chlamydomonas reinhardtii. J Biol Chem 292(26):10899–10911. https://doi.org/10.1074/jbc.M116.762229

Sadian Y, Gastogiannis C, Patasi C, Hofnagel O, Goody RS, Farkasovsky M, Rausner S (2013) The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2:e01085

Sala FA, Valadares NF, Macedo JN, Borges JC, Garratt RC (2016) Heterotypic coiled-coil formation is essential for the correct assembly of the septin heterofilament. Biophys J 111(12):2608–2619. https://doi.org/10.1016/j.bpj.2016.10.032

Sandrock K, Bartsch I, Blaser S, Busse A, Busse E, Zieger B (2011) Characterization of human septin interactions. Biol Chem 392:751–761

Sellin ME, Sandblad L, Stenmark S, Gullberg M (2011) Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell. 22:3152–3164. https://doi.org/10.1091/mbc.E11-03-0253

Serrão VH, Alessandro F, Caldas VE, Marçal RL, Pereira HD, Thiemann OH, Garratt RC (2011) Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 585:3868–3873. https://doi.org/10.1016/j.febslet.2011.10.043

Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449:311–315

Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A (2009) GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci USA. 106:16592–16597. https://doi.org/10.1073/pnas.0902858106

Smith C, Dolat L, Angelis D, Forgacs E, Spiliotis ET, Galkin VE (2015) Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity. J Mol Biol 427:3273–3284

Souza TA, Barbosa JA (2010) Cloning, overexpression, purification and preliminary characterization of human septin 8. Protein J 29:328–335

Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13:3532–3545

Valadares NF, Garratt RC (2016) Septin crystallization for structural analysis. Methods Cell Biol 136:321–338. https://doi.org/10.1016/bs.mcb.2016.03.017

Weems A, McMurray M (2017) The step-wise pathway of septin hetero-octamer assembly in budding yeast. Elife 25:6. https://doi.org/10.7554/eLife.23689

Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: achitecture and dynamics. Nat Rev 9:478–489

Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16:382–387

Zent E, Wittinghofer A (2014) Human septin isoforms and the GDP-GTP cycle. Biol Chem 395(2):169–180. https://doi.org/10.1515/hsz-2013-0268

Zent E, Vetter I, Wittinghofer A (2011) Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol Chem 392:791–797. https://doi.org/10.1515/BC.2011.082

Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo AP, DeMarco R (2014) Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 289:7799–7811. https://doi.org/10.1074/jbc.M113.525352

Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo AP, DeMarco R (2016) Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 131:96–105. https://doi.org/10.1016/j.biochi.2016.09.014

Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS (1999a) Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9:1458–1467

Zhang B, Zhang Y, Collins CC, Johnson DI, Zheng Y (1999b) A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. J. Biol Chem 274:2609–2612