Separation of chemical elements in the discharge channel of an inductive plasma gun

Springer Science and Business Media LLC - Tập 45 - Trang 647-655 - 2010
V. I. Sakharov

Tóm tắt

Zones of separation of chemical elements in the air plasma flow in the discharge channel of the VGU-4 100-kW inductive plasma gun with a sonic nozzle of the Institute for Problems in Mechanics of the Russian Academy of Sciences are determined from an analysis of numerical solutions obtained within the framework of the Navier-Stokes equations. The occurrence of these zones and their possible influence on heat transfer to bodies in underexpanded jet flows in physical experiments are explained.

Tài liệu tham khảo

N.A. Anfimov, “Certain Effects Connected with Multicomponent Nature of Gas Mixtures,” Izv. Akad. Nauk SSSR. Mekh. Mash. No. 5, 117 (1963). G.A. Tirskii, “Determining Effective Diffusion Coefficients in a Laminar Multicomponent Boundary Layer,” Dokl. Akad. Nauk SSSR 155, 1278 (1964). N.A. Anfimov, “Diffusive Separation in a Gas Mixture in the Presence of Dissociation,” Dokl. Akad. Nauk SSSR 156, 1316 (1964). N.A. Anfimov, “Representation of Dissociated Air as a Binary Gas Mixture in Solving Boundary Layer Problems,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 1, 47 (1964). J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1954). V.G. Gromov, “Chemically Nonequilibrium Laminar Boundary Layer in Dissociated Air,” Fluid Dynamics 1(2), 1 (1966). V.L. Kovalev and O.N. Suslov, “Diffusion Separation of Chemical Elements on a catalytic Surface,” Fluid Dynamics 23(4), 579 (1988). S.A. Vasil’evskii and G.A. Tirskii, “Diffusion of Elements and its Influence on Heat Transfer in Chemically Equilibrium Flows of Multicomponent Gases,” in: L.I. Sedov (ed.), Topical Gasdynamic and Physico-Chemical Models in Hypersonic Aerodynamics. Part 1 [in Russian], Moscow Univ. Press, Moscow (1994), p. 138. P. Rini, D. Vanden Abelee, and G. Degrez, “Elemental Demixing in Inductively Coupled Air Plasma Torches at High Pressures,” J. Thermophys. Heat Transfer 20, 31 (2006). M. Panesi, P. Rini, G. Degrez, and O. Chazot, “Analysis of Chemical Nonequilibrium and Elemental Demixing in Plasmatron Facility,” J. Thermophys. Heat Transfer 21, 57 (2007). A.F. Kolesnikov and S.A. Vasil’evskii, “Results and Problems of Inductively Coupled Plasma Flows Modeling,” Russian Academy of Sciences, Institute for Problems in Mechanics, Preprint No. 610 (1998). S.A. Vasil’evskii and A.F. Kolesnikov, “Numerical Simulation of Equilibrium Induction Plasma Flows in a Cylindrical Plasmatron Channel,” Fluid Dynamics 35(5), 769 (2000). N.E. Afonina, V.G. Gromov, and V.I. Sakharov, “HIGHTEMP Technique for High Temperature Gas Flows Numerical Simulations,” in: Proc. 5th Europ. Symp. Aerothermodynamics Space Vehicles. Cologne, Germany, 2004. SP 563 ESTEC, Noordwijk (2004), p. 323. S.V. Utyuzhnikov, A.V. Konyukhov, D.V. Rudenko, S.A. Vasi’evskii, A.F. Kolesnikov, and O. Chazot, “Simulation of Subsonic and Supersonic Flows in Inductive Plasmatrons,” AIAA J. 42, 1871 (2004). N.E. Afonina, S.A. Vasil’evskii, V.G. Gromov, A.F. Kolesnikov, I.S. Pershin, V.I. Sakharov, and M.I. Yakushin, “Flow and Heat Transfer in Underexpanded Air Jets Issuing from the Sonic Nozzle of a Plasma Generator,” Fluid Dynamics 37(5), 803 (2002). V.I. Sakharov, “Numerical Simulation of Thermally and Chemically Nonequilibrium Flows and Heat Transfer in Underexpanded Induction Plasmatron Jets,” Fluid Dynamics 42(6), 1007 (2007). Handbook on Thermodynamic Properties of Individual Matters. Vol. 1. Books 1 and 2 [in Russian], Nauka, Moscow (1978). S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976). L.B. Ibragimova, G.D. Smekhov, and O.P. Shatalov, “Dissociation Rate Constants of Diatomic Molecules under Thermal Equilibrium Conditions,” Fluid Dynamics 34(1), 153 (1999). S.A. Losev, V.N. Makarov, and M.Yu. Pogosbekyan, “Model of the Physico-Chemical Kinetics behind the Front of a very Intense Shock Wave in Air,” Fluid Dynamics 30(2), 299 (1995). C. Park, “Review of Chemical-Kinetic Problems of Future NASA Missions. Earth Entries,” J. Thermophys. Heat Transfer 7, 385 (1993). S.A. Losev, V.N. Makarov, M.Ju. Pogosbekyan, O.P. Shatalov, and V.S. Nikol’sky, “Thermochemical Nonequilibrium Kinetic Models in Strong Shock Waves in Air,” AIAA Paper No. 1994 (1990). R.C. Reid, J.M. Prausnitz, and T.K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1977). N.E. Afonina, and V.G. Gromov, “Thermochemical Nonequilibrium Computations for a MARS Express Probe,” in: Proc. 3rd Europ. Symp. Aerothermodynamocs Space Vehicles, ESTEC, Noordwijk (1998), p. 179. O.A. Gordeev, A.P. Kalinin, A.L. Komov, V.E. Lyusternik, and E.V. Samuilov, Reviews on Thermophysical Properties of Matters [in Russian], USSR Academy of Sciences, Institute of High Temperatures, Moscow (1985), No. 5(55).