Separating valid odd-cycle and odd-set inequalities for the multiple depot vehicle scheduling problem

EURO Journal on Computational Optimization - Tập 1 - Trang 283-312 - 2013
Mounira Groiez1, Guy Desaulniers2, Ahmed Hadjar3, Odile Marcotte4
1Département de mathématiques et génie industriel, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, H3C 3A7, Montreal, Canada.
2Département de mathématiques et génie industriel, École Polytechnique de Montréal, and GERAD, C.P. 6079, succ. Centre-ville, H3C 3A7, Montreal, Canada.
3Kronos Canadian Systems Inc., 3535 Queen Mary Road, Suite 650, H3V 1H8, Montreal, Canada.
4Département d’informatique, Université du Québec à Montréal, and GERAD, C.P. 8888, succ. Centre-ville, H3C 3P8, Montreal, Canada.

Tài liệu tham khảo

Bertossi, 1987, On some matching problems arising in vehicle scheduling models, Networks, 17, 271, 10.1002/net.3230170303 Bianco, 1994, A set partitioning approach to the multiple depot vehicle scheduling problem, Optim Methods Softw, 3, 163, 10.1080/10556789408805563 Bodin, 1978, UCOST: a Micro approach to a transit planning problem, J Urban Anal, 5, 46 Carpaneto, 1989, A branch and bound algorithm for the multiple vehicle scheduling problem, Networks, 19, 531, 10.1002/net.3230190505 Caprara, 1996, {0,1/2}-Chvátal-Gomory cuts, Math programm, 74, 221, 10.1007/BF02592196 Desaulniers G, Hickman MD (2007) Public Transit. In: Barnhart C, Laporte G (eds) Handbooks in OR & MS: transportation, vol 14. Elsevier, Amsterdam, pp 69–127 Desrosiers J, Dumas Y, Solomon M, Soumis F (1995) Time constrained routing and scheduling. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Handbooks in OR & MS: network routing, vol 8. Elsevier, Amsterdam, pp 35–139 Dolan, 2002, Benchmarking optimization software with performance profiles, Math Program, 91, 201, 10.1007/s101070100263 Fischetti, 2001, A polyhedral approach to simplified crew scheduling and vehicle scheduling problems, Manag Sci, 47, 833, 10.1287/mnsc.47.6.833.9810 Gintner, 2005, Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice, OR Spectr, 27, 507, 10.1007/s00291-005-0207-9 Hadjar, 2006, A branch-and-cut algorithm for the multiple depot vehicle scheduling problem, Oper Res, 54, 130, 10.1287/opre.1050.0240 Irnich, 2010, Path-reduced costs for eliminating arcs in routing and scheduling, INFORMS J Comput, 22, 297, 10.1287/ijoc.1090.0341 Kliewer, 2006, A time-space network based exact optimization model for multi-depot bus scheduling, Eur J Oper Res, 175, 1616, 10.1016/j.ejor.2005.02.030 Laurent, 2009, Iterated local search for the multiple depot vehicle scheduling problem, Comput Ind Eng, 57, 277, 10.1016/j.cie.2008.11.028 Löbel A (1997) Optimal vehicle scheduling in public transit. PhD thesis, Technische Universität Berlin, Berlin Löbel, 1998, Vehicle scheduling in public transit and Lagrangean Pricing, Manag Sci, 44, 1637, 10.1287/mnsc.44.12.1637 Nemhauser, 1988 Nemhauser, 1992, A strong cutting plane/branch-and-bound algorithm for node packing, J Oper Res Soc, 43, 443, 10.1057/jors.1992.71 Oukil, 2007, Stabilized column generation for highly degenerate multiple-depot vehicle scheduling problems, Comput OR, 34, 817, 10.1016/j.cor.2005.05.011 Padberg, 1982, Odd minimum cut-sets and b-matchings, Math Oper Res, 7, 67, 10.1287/moor.7.1.67 Pepin, 2009, Comparison of Heuristic approaches for the multiple depot vehicle scheduling problem, J Sched, 12, 17, 10.1007/s10951-008-0072-x Pulleyblank WR, Edmonds J (1974) Facets of 1-matching polyhedra. In: Berge C, Ray-Chaudhuri D (eds) Hypergraph seminar. Springer, Berlin, pp 214–242 Rebennack S (2006) Maximum stable set problem: a branch & cut solver. Diploma Thesis, Ruprecht- Karls-Universität Heidelberg, Heidelberg Ribeiro, 1994, A column generation approach to the multiple depot vehicle scheduling problem, Oper Res, 42, 1994