Sentryn and SAD Kinase Link the Guided Transport and Capture of Dense Core Vesicles in <i>Caenorhabditis elegans</i>

Genetics - Tập 210 Số 3 - Trang 925-946 - 2018
Logan M Morrison1, Stacey L. Edwards1, Laura Manning2, Natalia Stec1, Janet E. Richmond2, Kenneth G. Miller1
1Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma 73104
2Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607

Tóm tắt

Abstract Dense core vesicles (DCVs) can transmit signals by releasing neuropeptides from specialized synaptic regions called active zones. DCVs reach the active zone by motorized transport through a long axon. A reverse motor frequently interrupts progress by taking DCVs in the opposite direction. “Guided transport” refers to the mechanism by which outward movements ultimately dominate to bring DCVs to the synaptic region. After guided transport, DCVs alter their interactions with motors and enter a “captured” state. The mechanisms of guided transport and capture of DCVs are unknown. Here, we discovered two proteins that contribute to both processes in Caenorhabditis elegans. SAD kinase and a novel conserved protein we named Sentryn are the first proteins found to promote DCV capture. By imaging DCVs moving in various regions of single identified neurons in living animals, we found that DCV guided transport and capture are linked through SAD kinase, Sentryn, and Liprin-α. These proteins act together to regulate DCV motorized transport in a region-specific manner. Between the cell body and the synaptic region, they promote forward transport. In the synaptic region, where all three proteins are highly enriched at active zones, they promote DCV pausing by inhibiting transport in both directions. These three proteins appear to be part of a special subset of active zone-enriched proteins because other active zone proteins do not share their unique functions.

Từ khóa


Tài liệu tham khảo

Ackley, 2005, The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation., J. Neurosci., 25, 7517, 10.1523/JNEUROSCI.2010-05.2005

Acuna, 2016, How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs., Neuron, 91, 792, 10.1016/j.neuron.2016.07.042

Arribere, 2014, Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans., Genetics, 198, 837, 10.1534/genetics.114.169730

Baas, 2011, Hooks and comets: the story of microtubule polarity orientation in the neuron., Dev. Neurobiol., 71, 403, 10.1002/dneu.20818

Banerjee, 2017, Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior., PLoS Genet., 13, e1006697, 10.1371/journal.pgen.1006697

Bhattacharya, 2015, In the proper context: neuropeptide regulation of behavioral transitions during food searching., Worm, 4, e1062971, 10.1080/21624054.2015.1062971

Bhattacharya, 2014, A conserved dopamine-cholecystokinin signaling pathway shapes context-dependent Caenorhabditis elegans behavior., PLoS Genet., 10, e1004584, 10.1371/journal.pgen.1004584

Brenner, 1974, The genetics of C. elegans., Genetics, 77, 71, 10.1093/genetics/77.1.71

Bulgari, 2014, Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals., Proc. Natl. Acad. Sci. USA, 111, 3597, 10.1073/pnas.1322170111

Bulgari, 2017, Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores., Eur. J. Cell Biol., 96, 402, 10.1016/j.ejcb.2017.01.001

Burton, 1981, Polarity of axoplasmic microtubules in the olfactory nerve of the frog., Proc. Natl. Acad. Sci. USA, 78, 3269, 10.1073/pnas.78.5.3269

Cavolo, 2015, Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles., Mol. Biol. Cell, 26, 2664, 10.1091/mbc.E14-11-1564

Cavolo, 2016, Activity induces Fmr1-sensitive synaptic capture of anterograde circulating neuropeptide vesicles., J. Neurosci., 36, 11781, 10.1523/JNEUROSCI.2212-16.2016

Charlie, 2006, Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network., Genetics, 172, 943, 10.1534/genetics.105.049577

Chen, 2016, The neuropeptides FLP-2 and PDF-1 act in concert to arouse Caenorhabditis elegans locomotion., Genetics, 204, 1151, 10.1534/genetics.116.192898

Chia, 2012, NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins., Nat. Neurosci., 15, 234, 10.1038/nn.2991

Choi, 2015, Sensory neurons arouse C. elegans locomotion via both glutamate and neuropeptide release., PLoS Genet., 11, e1005359, 10.1371/journal.pgen.1005359

Cool, 1997, Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice., Cell, 88, 73, 10.1016/S0092-8674(00)81860-7

Crump, 2001, The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination., Neuron, 29, 115, 10.1016/S0896-6273(01)00184-2

Dai, 2006, SYD-2 liprin-alpha organizes presynaptic active zone formation through ELKS., Nat. Neurosci., 9, 1479, 10.1038/nn1808

Deken, 2005, Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans., J. Neurosci., 25, 5975, 10.1523/JNEUROSCI.0804-05.2005

Dickinson, 2013, Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination., Nat. Methods, 10, 1028, 10.1038/nmeth.2641

Edwards, 2008, A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans., PLoS Biol., 6, e198, 10.1371/journal.pbio.0060198

Edwards, 2015, UNC-16 (JIP3) acts through synapse-assembly proteins to inhibit the active transport of cell soma organelles to Caenorhabditis elegans motor neuron axons., Genetics, 201, 117, 10.1534/genetics.115.177345

Edwards, 2015, Synapse-assembly proteins maintain synaptic vesicle cluster stability and regulate synaptic vesicle transport in Caenorhabditis elegans., Genetics, 201, 91, 10.1534/genetics.115.177337

Edwards, 2018, Sentryn acts with a subset of active zone proteins to optimize the localization of synaptic vesicles in Caenorhabditis elegans., Genetics, 210, 947, 10.1534/genetics.118.301466

Fouquet, 2009, Maturation of active zone assembly by Drosophila Bruchpilot., J. Cell Biol., 186, 129, 10.1083/jcb.200812150

Fricker, 1988, Carboxypeptidase E., Annu. Rev. Physiol., 50, 309, 10.1146/annurev.ph.50.030188.001521

Goodwin, 2013, The scaffolding protein SYD-2/liprin-alpha regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons., PLoS One, 8, e54763, 10.1371/journal.pone.0054763

Goodwin, 2012, Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons., J. Neurosci., 32, 8158, 10.1523/JNEUROSCI.0251-12.2012

Greenwald, 1980, unc-93 (e1500): a behavioral mutant of Caenorhabditis elegans that defines a gene with a wild type null phenotype., Genetics, 96, 147, 10.1093/genetics/96.1.147

Hall, 1991, Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans., Cell, 65, 837, 10.1016/0092-8674(91)90391-B

Hammarlund, 2008, CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons., J. Cell Biol., 180, 483, 10.1083/jcb.200708018

Heidemann, 1981, Polarity orientation of axonal microtubules., J. Cell Biol., 91, 661, 10.1083/jcb.91.3.661

Hoover, 2014, A novel CaM kinase II pathway controls the location of neuropeptide release from Caenorhabditis elegans motor neurons., Genetics, 196, 745, 10.1534/genetics.113.158568

Hu, 2011, A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release., Neuron, 71, 92, 10.1016/j.neuron.2011.04.021

Hu, 2015, NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release., J. Neurosci., 35, 1038, 10.1523/JNEUROSCI.2825-14.2015

Hung, 2007, Neuronal polarity is regulated by a direct interaction between a scaffolding protein, Neurabin, and a presynaptic SAD-1 kinase in Caenorhabditis elegans., Development, 134, 237, 10.1242/dev.02725

Inoue, 2006, SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release., Neuron, 50, 261, 10.1016/j.neuron.2006.03.018

Kim, 2008, A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation., Neural Dev., 3, 23, 10.1186/1749-8104-3-23

Kim, 2010, C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization., Development, 137, 93, 10.1242/dev.041459

Kim, 2003, The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo., J. Biol. Chem., 278, 6291, 10.1074/jbc.M212287200

Kittelmann, 2013, Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans., J. Cell Biol., 203, 849, 10.1083/jcb.201302022

Klassen, 2010, An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation., Neuron, 66, 710, 10.1016/j.neuron.2010.04.033

Ko, 2003, Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting., J. Neurosci., 23, 1667, 10.1523/JNEUROSCI.23-05-01667.2003

Ko, 2003, Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins., J. Biol. Chem., 278, 42377, 10.1074/jbc.M307561200

Koushika, 2001, A post-docking role for active zone protein Rim., Nat. Neurosci., 4, 997, 10.1038/nn732

Kupfermann, 1991, Functional studies of cotransmission., Physiol. Rev., 71, 683, 10.1152/physrev.1991.71.3.683

Levitan, 2008, Signaling for vesicle mobilization and synaptic plasticity., Mol. Neurobiol., 37, 39, 10.1007/s12035-008-8014-3

Li, 2014, Drosophila Syd-1, liprin-alpha, and protein phosphatase 2A B’ subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons., J. Neurosci., 34, 8474, 10.1523/JNEUROSCI.0409-14.2014

Lim, 2017, Two kinesins drive anterograde neuropeptide transport., Mol. Biol. Cell, 28, 3542, 10.1091/mbc.E16-12-0820

Lim, 2016, Neuroendocrine modulation sustains the C. elegans forward motor state., eLife, 5, 10.7554/eLife.19887

Liu, 2011, RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release., Science, 334, 1565, 10.1126/science.1212991

Liu, 2007, FMRFamide-like neuropeptides and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans., J. Neurosci., 27, 7174, 10.1523/JNEUROSCI.1405-07.2007

Mello, 1991, Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences., EMBO J., 10, 3959, 10.1002/j.1460-2075.1991.tb04966.x

Miller, 2005, Direct observation demonstrates that liprin-alpha is required for trafficking of synaptic vesicles., Curr. Biol., 15, 684, 10.1016/j.cub.2005.02.061

Miller, 1999, Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans., Neuron, 24, 323, 10.1016/S0896-6273(00)80847-8

Ohtsuka, 2002, Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13–1., J. Cell Biol., 158, 577, 10.1083/jcb.200202083

Olsen, 2005, Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex., J. Cell Biol., 170, 1127, 10.1083/jcb.200503011

Ou, 2010, Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components., Cell, 141, 846, 10.1016/j.cell.2010.04.011

Owald, 2010, A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila., J. Cell Biol., 188, 565, 10.1083/jcb.200908055

Pack-Chung, 2007, A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport., Nat. Neurosci., 10, 980, 10.1038/nn1936

Paix, 2014, Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans., Genetics, 1347, 10.1534/genetics.114.170423

Patel, 2006, Hierarchical assembly of presynaptic components in defined C. elegans synapses., Nat. Neurosci., 9, 1488, 10.1038/nn1806

Reynolds, 2005, Convergent, RIC-8-dependent Galpha signaling pathways in the Caenorhabditis elegans synaptic signaling network., Genetics, 169, 651, 10.1534/genetics.104.031286

Richmond, 2002, The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans., Curr. Opin. Neurobiol., 12, 499, 10.1016/S0959-4388(02)00360-4

Rindler, 1998, Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH., J. Biol. Chem., 273, 31180, 10.1074/jbc.273.47.31180

Schade, 2005, Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network., Genetics, 169, 631, 10.1534/genetics.104.032334

Schoch, 2002, RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone., Nature, 415, 321, 10.1038/415321a

Serra-Pages, 1998, Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins., J. Biol. Chem., 273, 15611, 10.1074/jbc.273.25.15611

Shakiryanova, 2006, Activity-dependent synaptic capture of transiting peptidergic vesicles., Nat. Neurosci., 9, 896, 10.1038/nn1719

Shin, 2003, Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha., J. Biol. Chem., 278, 11393, 10.1074/jbc.M211874200

Sieburth, 2007, PKC-1 regulates secretion of neuropeptides., Nat. Neurosci., 10, 49, 10.1038/nn1810

Sossin, 1991, Biosynthesis and sorting of neuropeptides., Curr. Opin. Neurobiol., 1, 79, 10.1016/0959-4388(91)90013-W

Stefanakis, 2015, Regulatory logic of Pan-neuronal gene expression in C. elegans., Neuron, 87, 733, 10.1016/j.neuron.2015.07.031

Stiernagle, 2006, Maintenance of C. elegans, 10.1895/wormbook.1.101.1

Stigloher, 2011, The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions., J. Neurosci., 31, 4388, 10.1523/JNEUROSCI.6164-10.2011

Sudhof, 2004, The synaptic vesicle cycle., Annu. Rev. Neurosci., 27, 509, 10.1146/annurev.neuro.26.041002.131412

Sudhof, 2012, The presynaptic active zone., Neuron, 75, 11, 10.1016/j.neuron.2012.06.012

Sulston, 1988, Methods, The Nematode Caenorhabditis elegans, 596

Von Stetina, 2007, Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system., Genome Biol., 8, R135, 10.1186/gb-2007-8-7-r135

Wagh, 2006, Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila., Neuron, 49, 833, 10.1016/j.neuron.2006.02.008

Wagner, 2009, Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans., Proc. Natl. Acad. Sci. USA, 106, 19605, 10.1073/pnas.0902949106

Wang, 2016, Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking., Neuron, 91, 777, 10.1016/j.neuron.2016.07.005

Wang, 1997, Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion., Nature, 388, 593, 10.1038/41580

Wang, 2000, The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins., J. Biol. Chem., 275, 20033, 10.1074/jbc.M909008199

Wang, 2002, A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones., Proc. Natl. Acad. Sci. USA, 99, 14464, 10.1073/pnas.182532999

Weimer, 2006, Preservation of C. elegans tissue via high-pressure freezing and freeze-substitution for ultrastructural analysis and immunocytochemistry., Methods Mol. Biol., 351, 203

Weimer, 2006, UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains., J. Neurosci., 26, 8040, 10.1523/JNEUROSCI.2350-06.2006

White, 1986, The structure of the nervous system of the nematode Caenorhabditis elegans., Philos. Trans. R. Soc. Lond. B Biol. Sci., 314, 1, 10.1098/rstb.1986.0056

Wong, 2012, Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture., Cell, 148, 1029, 10.1016/j.cell.2011.12.036

Wu, 2013, The balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses., Neuron, 78, 994, 10.1016/j.neuron.2013.04.035

Wyszynski, 2002, Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting., Neuron, 34, 39, 10.1016/S0896-6273(02)00640-2

Xuan, 2017, Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release., eLife, 6, e29276, 10.7554/eLife.29276

Yeh, 2005, Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans., J. Neurosci., 25, 3833, 10.1523/JNEUROSCI.4978-04.2005

Zhen, 1999, The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans., Nature, 401, 371, 10.1038/43886

Zheng, 2014, The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport., PLoS Genet., 10, e1004644, 10.1371/journal.pgen.1004644