Sentiment and position-taking analysis of parliamentary debates: a systematic literature review

Gavin Abercrombie1, Riza Batista-Navarro1
1University of Manchester, Manchester, UK

Tóm tắt

AbstractParliamentary and legislative debate transcripts provide access to information concerning the opinions, positions, and policy preferences of elected politicians. They attract attention from researchers from a wide variety of backgrounds, from political and social sciences to computer science. As a result, the problem of computational sentiment and position-taking analysis has been tackled from different perspectives, using varying approaches and methods, and with relatively little collaboration or cross-pollination of ideas. The existing research is scattered across publications from various fields and venues. In this article, we present the results of a systematic literature review of 61 studies, all of which address the automatic analysis of the sentiment and opinions expressed, and the positions taken by speakers in parliamentary (and other legislative) debates. In this review, we discuss the existing research with regard to the aims and objectives of the researchers who work in this area, the automatic analysis tasks which they undertake, and the approaches and methods which they use. We conclude by summarizing their findings, discussing the challenges of applying computational analysis to parliamentary debates, and suggesting possible avenues for further research.

Từ khóa


Tài liệu tham khảo

Abercrombie, G., & Batista-Navarro, R. (2018). ‘Aye’ or ‘no’? Speech-level sentiment analysis of Hansard UK parliamentary debate transcripts. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC-2018). European Languages Resources Association (ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-1659.

Abercrombie, G., & Batista-Navarro, R.T. (2018). Identifying opinion-topics and polarity of parliamentary debate motions. In: Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social media analysis. Association for Computational Linguistics, Brussels, Belgium (pp. 280–285). https://doi.org/10.18653/v1/W18-6241. https://www.aclweb.org/anthology/W18-6241.

Ahmadalinezhad, M., & Makrehchi, M. (2018). Detecting agreement and disagreement in political debates. In R. Thomson, C. Dancy, A. Hyder, & H. Bisgin (Eds.), Social, cultural, and behavioral modeling (pp. 54–60). Cham: Springer.

Akhmedova, S., Semenkin, E., & Stanovov, V. (2018). Co-operation of biology related algorithms for solving opinion mining problems by using different term weighting schemes. In: K. Madani, D. Peaucelle, O. Gusikhin (Eds.) Informatics in control, automation and robotics: 13th international conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016 (pp. 73–90). Cham: Springer. https://doi.org/10.1007/978-3-319-55011-4_4.

Allison, B. (2008). Sentiment detection using lexically-based classifiers. In P. Sojka, A. Horák, I. Kopeček, & K. Pala (Eds.), Text, speech and dialogue (pp. 21–28). Berlin: Springer.

Balahur, A., Kozareva, Z., & Montoyo, A. (2009). Determining the polarity and source of opinions expressed in political debates. In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing (pp. 468–480). Berlin: Springer.

Bansal, M., Cardie, C., & Lee, L. (2008). The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. In: Coling 2008: Companion volume: Posters (pp. 15–18). Coling 2008 Organizing Committee, Manchester, UK. https://www.aclweb.org/anthology/C08-2004.

Baturo, A., Dasandi, N., & Mikhaylov, S. J. (2017). Understanding state preferences with text as data: Introducing the un general debate corpus. Research and Politics, 4(2), 2053168017712821. https://doi.org/10.1177/2053168017712821.

Bhatia, S., P, D. (2018). Topic-specific sentiment analysis can help identify political ideology. In: Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 79–84). Association for Computational Linguistics, Brussels, Belgium. https://doi.org/10.18653/v1/W18-6212. https://www.aclweb.org/anthology/W18-6212.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.

Bonica, A. (2016). A data-driven voter guide for US elections: Adapting quantitative measures of the preferences and priorities of political elites to help voters learn about candidates. Journal of the Social Sciences, 2(7), 11–32. https://doi.org/10.7758/RSF.2016.2.7.02. https://www.rsfjournal.org/content/2/7/11.

Budhwar, A., Kuboi, T., Dekhtyar, A., & Khosmood, F. (2018). Predicting the vote using legislative speech. In: Proceedings of the 19th annual international conference on digital government research: governance in the data age, dg.o ’18 (pp. 35:1–35:10). ACM, New York, NY, USA. https://doi.org/10.1145/3209281.3209374.

Burfoot, C. (2008). Using multiple sources of agreement information for sentiment classification of political transcripts. In: Proceedings of the Australasian language technology association workshop 2008 (pp. 11–18). Hobart, Australia. https://www.aclweb.org/anthology/U08-1003.

Burfoot, C., Bird, S., & Baldwin, T. (2011). Collective classification of congressional floor-debate transcripts. In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 1506–1515). Association for Computational Linguistics, Portland, Oregon, USA. https://www.aclweb.org/anthology/P11-1151.

Burford, C., Bird, S., & Baldwin, T. (2015). Collective document classification with implicit inter-document semantic relationships. In: Proceedings of the fourth joint conference on lexical and computational semantics (pp. 106–116). Association for Computational Linguistics, Denver, Colorado. https://doi.org/10.18653/v1/S15-1012. https://www.aclweb.org/anthology/S15-1012.

Chen, W., Zhang, X., Wang, T., Yang, B., & Li, Y. (2017). Opinion-aware knowledge graph for political ideology detection. In: Proceedings of the 26th international joint conference on artificial intelligence, pp. 3647–3653.

Diermeier, D., Godbout, J. F., Yu, B., & Kaufmann, S. (2012). Language and ideology in congress. British Journal of Political Science, 42(1), 31–55.

Duthie, R., & Budzynska, K. (2018). A deep modular rnn approach for ethos mining. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, (IJCAI-18), pp. 4041–4047.

Dzieciątko, M. (2019). Application of text analytics to analyze emotions in the speeches. In E. Pietka, P. Badura, J. Kawa, & W. Wieclawek (Eds.), Information Technology in Biomedicine (pp. 525–536). Cham: Springer.

Frid-Nielsen, S. S. (2018). Human rights or security? Positions on asylum in european parliament speeches. European Union Politics, 19(2), 344–362. https://doi.org/10.1177/1465116518755954.

Glavaš, G., Nanni, F., & Ponzetto, S.P. (2017). Unsupervised cross-lingual scaling of political texts. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: Volume 2, short papers (pp. 688–693). Association for Computational Linguistics, Valencia, Spain. https://www.aclweb.org/anthology/E17-2109.

Glavaš, G., Nanni, F., & Ponzetto, S.P. (2019). Computational analysis of political texts: Bridging research efforts across communities. In: Proceedings of the 57th annual meeting of the association for computational linguistics: Tutorial abstracts (pp. 18–23). Association for Computational Linguistics, Florence, Italy. https://doi.org/10.18653/v1/P19-4004. https://www.aclweb.org/anthology/P19-4004.

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297.

Hirst, G., Riabinin, Y., & Graham, J. (2010). Party status as a confound in the automatic classification of political speech by ideology. In: Proceedings of 10th international conference on statistical analysis of textual data/10es Journées internationales d’Analyse statistique des Données Textuelles (JADT 2010), Rome, pp. 731–742.

Honkela, T., Korhonen, J., Lagus, K., & Saarinen, E. (2014). Five-dimensional sentiment analysis of corpora, documents and words. In T. Villmann, F. M. Schleif, M. Kaden, & M. Lange (Eds.), Advances in self-organizing maps and learning vector quantization (pp. 209–218). Cham: Springer.

Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American Journal of Political Science, 54(1), 229–247. https://doi.org/10.1111/j.1540-5907.2009.00428.x.

Iliev, I. R., Huang, X., & Gel, Y. R. (2019). Political rhetoric through the lens of non-parametric statistics: Are our legislators that different? Journal of the Royal Statistical Society Series A (Statistics in Society), 182(2), 583–604. https://doi.org/10.1111/rssa.12421.

Iyyer, M., Enns, P., Boyd-Graber, J., & Resnik, P. (2014). Political ideology detection using recursive neural networks. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 1113–1122). Association for Computational Linguistics, Baltimore, Maryland. https://doi.org/10.3115/v1/P14-1105. https://www.aclweb.org/anthology/P14-1105

Jensen, J., Naidu, S., Kaplan, E., Wilse-Samson, L., Gergen, D., Zuckerman, M., & Spirling, A. (2012). Political polarization and the dynamics of political language: Evidence from 130 years of partisan speech [with comments and discussion]. Brookings Papers on Economic Activity, pp. 1–81.

Ji, Y., & Smith, N.A. (2017) Neural discourse structure for text categorization. In: Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 996–1005). Association for Computational Linguistics, Vancouver, Canada. https://doi.org/10.18653/v1/P17-1092. https://www.aclweb.org/anthology/P17-1092.

Kaal, B., Maks, I., & van Elfrinkhof, A. (2014). From text to political positions: Text analysis across disciplines (Vol. 55). Philadelphia: John Benjamins Publishing Company.

Kapočiūtė-Dzikienė, J., & Krupavičius, A. (2014). Predicting party group from the Lithuanian parliamentary speeches. Information Technology and Control, 43(3), 321–332.

Kauffman, D., Khosmood, F., Kuboi, T., & Dekhtyar, A. (2018). Learning alignments from legislative discourse. In: Proceedings of the 19th annual international conference on digital government research: Governance in the data age, dg.o ’18 (pp. 119:1–119:2). ACM, New York, NY, USA. https://doi.org/10.1145/3209281.3209413.

Kim, I. S., Londregan, J., & Ratkovic, M. (2018). Estimating spatial preferences from votes and text. Political Analysis, 26(2), 210–229.

Lapponi, E., Søyland, M. G., Velldal, E., & Oepen, S. (2018). The talk of norway: A richly annotated corpus of the norwegian parliament, 1998–2016. Language Resources and Evaluation, 52(3), 873–893. https://doi.org/10.1007/s10579-018-9411-5.

Laver, M., Benoit, K., & Garry, J. (2003). Extracting policy positions from political texts using words as data. American Political Science Review, 97(2), 311–331.

Lefait, G., & Kechadi, T. (2010). Analysis of deputy and party similarities through hierarchical clustering. In: 2010 fourth international conference on digital society (pp. 264–268). https://doi.org/10.1109/ICDS.2010.49.

Li, X., Chen, W., Wang, T., & Huang, W. (2017). Target-specific convolutional bi-directional lstm neural network for political ideology analysis. In L. Chen, C. S. Jensen, C. Shahabi, X. Yang, & X. Lian (Eds.), Web and Big Data (pp. 64–72). Cham: Springer.

Liu, B. (2012). Sentiment analysis and opinion mining, synthesis lectures on human language technologies (Vol. 5). San Rafael: Morgan & Claypool Publishers.

Lowe, W., & Benoit, K. (2013). Validating estimates of latent traits from textual data using human judgment as a benchmark. Political Analysis, 21(3), 298–313.

Martineau, J., Finin, T., Joshi, A., & Patel, S. (2009). Improving binary classification on text problems using differential word features. In: Proceedings of the 18th ACM conference on information and knowledge management, CIKM ’09 (pp. 2019–2024). ACM, New York, NY, USA. https://doi.org/10.1145/1645953.1646291.

Menini, S., Nanni, F., Ponzetto, S.P., & Tonelli, S. (2017). Topic-based agreement and disagreement in US electoral manifestos. In: Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 2938–2944). Association for Computational Linguistics, Copenhagen, Denmark. https://doi.org/10.18653/v1/D17-1318. https://www.aclweb.org/anthology/D17-1318.

Menini, S., & Tonelli, S. (2016). Agreement and disagreement: Comparison of points of view in the political domain. In: Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers (pp. 2461–2470). The COLING 2016 Organizing Committee, Osaka, Japan. https://www.aclweb.org/anthology/C16-1232.

Mikhaylov, S., Laver, M., & Benoit, K. (2008). Coder reliability and misclassification in comparative manifesto project codings. In: 66th MPSA annual national conference.

Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and sentiment in tweets. ACM Transactions on Internet Technology, 17(3), 26:1–26:23. https://doi.org/10.1145/3003433.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). The PRISMA group: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.

Monroe, B. L., Colaresi, M. P., & Quinn, K. M. (2008). Fightin’words: Lexical feature selection and evaluation for identifying the content of political conflict. Political Analysis, 16(4), 372–403.

Naderi, N., & Hirst, G. (2016). Argumentation mining in parliamentary discourse. In M. Baldoni, C. Baroglio, F. Bex, F. Grasso, N. Green, M. R. Namazi-Rad, M. Numao, & M. T. Suarez (Eds.), Principles and practice of multi-agent systems (pp. 16–25). Cham: Springer.

Nanni, F., Zirn, C., Glavaš, G., Eichorst, J., & Ponzetto, S.P. (2016) Topfish: topic-based analysis of political position in us electoral campaigns. In: PolText 2016: The international conference on the advances in computational analysis of political text: proceedings of the conference.

Nguyen, V.A., Boyd-Graber, J., Resnik, P., & Miler, K. (2015). Tea party in the house: A hierarchical ideal point topic model and its application to republican legislators in the 112th congress. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long papers) (pp. 1438–1448). Association for Computational Linguistics, Beijing, China. https://doi.org/10.3115/v1/P15-1139. https://www.aclweb.org/anthology/P15-1139.

Nguyen, V. A., Ying, J. L., & Resnik, P. (2013). Lexical and hierarchical topic regression. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 26 (pp. 1106–1114). Curran Associates Inc. http://papers.nips.cc/paper/5163-lexical-and-hierarchical-topic-regression.pdf.

Onyimadu, O., Nakata, K., Wilson, T., Macken, D., & Liu, K. (2014). Towards sentiment analysis on parliamentary debates in hansard. In W. Kim, Y. Ding, & H. G. Kim (Eds.), Semantic technology (pp. 48–50). Cham: Springer.

Owen, E. (2017). Exposure to offshoring and the politics of trade liberalization: Debate and votes on free trade agreements in the US house of representatives, 2001–2006. International Studies Quarterly, 61(2), 297–311. https://doi.org/10.1093/isq/sqx020.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011.

Plantié, M., Roche, M., Dray, G., & Poncelet, P. (2008). Is a voting approach accurate for opinion mining? In I. Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data warehousing and knowledge discovery (pp. 413–422). Berlin: Springer.

Proksch, S. O., Lowe, W., Wäckerle, J., & Soroka, S. (2019). Multilingual sentiment analysis: A new approach to measuring conflict in legislative speeches. Legislative Studies Quarterly, 44(1), 97–131. https://doi.org/10.1111/lsq.12218.

Proksch, S. O., & Slapin, J. B. (2010). Position taking in European parliament speeches. British Journal of Political Science, 40(3), 587–611.

Proksch, S. O., & Slapin, J. B. (2015). The politics of parliamentary debate. Cambridge: Cambridge University Press.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the english language. London: Longman.

Rauh, C. (2018). Validating a sentiment dictionary for german political language—a workbench note. Journal of Information Technology and Politics, 15(4), 319–343. https://doi.org/10.1080/19331681.2018.1485608.

Rheault, L. (2016) Expressions of anxiety in political texts. In Proceedings of the first workshop on nlp and computational social science (pp. 92–101). Association for Computational Linguistics, Austin, Texas. https://doi.org/10.18653/v1/W16-5612. https://www.aclweb.org/anthology/W16-5612.

Rheault, L., Beelen, K., Cochrane, C., & Hirst, G. (2016). Measuring emotion in parliamentary debates with automated textual analysis. PLoS One, 11(12), 1–18. https://doi.org/10.1371/journal.pone.0168843.

Richards, L. (2005). Handling qualitative data: A practical guide. London: Sage Publications.

Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, Š., & Sedlmair, M. (2018). More than bags of words: Sentiment analysis with word embeddings. Communication Methods and Measures, 12(2–3), 140–157. https://doi.org/10.1080/19312458.2018.1455817.

Sakamoto, T., & Takikawa, H. (2017). Cross-national measurement of polarization in political discourse: Analyzing floor debate in the US the japanese legislatures. In 2017 IEEE international conference on big data (Big Data) (pp. 3104–3110). https://doi.org/10.1109/BigData.2017.8258285.

Salah, Z. (2014). Machine learning and sentiment analysis approaches for the analysis of parliamentary debates. Ph.D. thesis, University of Liverpool.

Salah, Z., Coenen, F., & Grossi, D. (2013). Extracting debate graphs from parliamentary transcripts: A study directed at uk house of commons debates. In Proceedings of the fourteenth international conference on artificial intelligence and law, ICAIL ’13 (pp. 121–130). ACM, New York, NY, USA. https://doi.org/10.1145/2514601.2514615.

Salah, Z., Coenen, F., & Grossi, D. (2013). Generating domain-specific sentiment lexicons for opinion mining. In H. Motoda, Z. Wu, L. Cao, O. Zaiane, M. Yao, & W. Wang (Eds.), Advanced data mining and applications (pp. 13–24). Berlin: Springer.

Schwarz, D., Traber, D., & Benoit, K. (2017). Estimating intra-party preferences: Comparing speeches to votes. Political Science Research and Methods, 5(2), 379–396.

Seligman, M. E. P. (2012). Flourish: A visionary new understanding of happiness and well-being. New York: Simon and Schuster.

Sim, Y., Acree, B.D.L., Gross, J.H., & Smith, N.A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 91–101). Association for Computational Linguistics, Seattle, Washington, USA. https://www.aclweb.org/anthology/D13-1010.

Sokolova, M., & Lapalme, G. (2008). Verbs speak loud: Verb categories in learning polarity and strength of opinions. In S. Bergler (Ed.), Advances in artificial intelligence (pp. 320–331). Berlin: Springer.

Taddy, M. (2013). Multinomial inverse regression for text analysis. Journal of the American Statistical Association, 108(503), 755–770.

Thomas, M., Pang, B., & Lee, L. (2006). Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In Proceedings of the 2006 conference on empirical methods in natural language processing (pp. 327–335). Association for Computational Linguistics, Sydney, Australia. https://www.aclweb.org/anthology/W06-1639.

van der Zwaan, J.M., Marx, M., & Kamps, J. (2016). Validating cross-perspective topic modeling for extracting political parties’ positions from parliamentary proceedings. In Proceedings of the twenty-second European conference on artificial intelligence, ECAI’16 (pp. 28–36). IOS Press, Amsterdam, The Netherlands, The Netherlands. https://doi.org/10.3233/978-1-61499-672-9-28.

Vilares, D., & He, Y. (2017). Detecting perspectives in political debates. In Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 1573–1582). Association for Computational Linguistics, Copenhagen, Denmark. https://doi.org/10.18653/v1/D17-1165. https://www.aclweb.org/anthology/D17-1165.

Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys, 50(2), 25:1–25:33. https://doi.org/10.1145/3057270.

Yessenalina, A., Yue, Y., & Cardie, C. (2010). Multi-level structured models for document-level sentiment classification. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 1046–1056). Association for Computational Linguistics, Cambridge, MA. https://www.aclweb.org/anthology/D10-1102.

Yogatama, D., Kong, L., & Smith, N.A. (2015). Bayesian optimization of text representations. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 2100–2105). Association for Computational Linguistics, Lisbon, Portugal. https://doi.org/10.18653/v1/D15-1251. https://www.aclweb.org/anthology/D15-1251.

Yogatama, D., & Smith, N. (2014). Making the most of bag of words: Sentence regularization with alternating direction method of multipliers. In International conference on machine learning, pp. 656–664.

Yogatama, D., & Smith, N.A. (2014). Linguistic structured sparsity in text categorization. In Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 786–796). Association for Computational Linguistics, Baltimore, Maryland. https://doi.org/10.3115/v1/P14-1074. https://www.aclweb.org/anthology/P14-1074.