Sentiment and position-taking analysis of parliamentary debates: a systematic literature review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abercrombie, G., & Batista-Navarro, R. (2018). ‘Aye’ or ‘no’? Speech-level sentiment analysis of Hansard UK parliamentary debate transcripts. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC-2018). European Languages Resources Association (ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-1659.
Abercrombie, G., & Batista-Navarro, R.T. (2018). Identifying opinion-topics and polarity of parliamentary debate motions. In: Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social media analysis. Association for Computational Linguistics, Brussels, Belgium (pp. 280–285). https://doi.org/10.18653/v1/W18-6241. https://www.aclweb.org/anthology/W18-6241.
Ahmadalinezhad, M., & Makrehchi, M. (2018). Detecting agreement and disagreement in political debates. In R. Thomson, C. Dancy, A. Hyder, & H. Bisgin (Eds.), Social, cultural, and behavioral modeling (pp. 54–60). Cham: Springer.
Akhmedova, S., Semenkin, E., & Stanovov, V. (2018). Co-operation of biology related algorithms for solving opinion mining problems by using different term weighting schemes. In: K. Madani, D. Peaucelle, O. Gusikhin (Eds.) Informatics in control, automation and robotics: 13th international conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016 (pp. 73–90). Cham: Springer. https://doi.org/10.1007/978-3-319-55011-4_4.
Allison, B. (2008). Sentiment detection using lexically-based classifiers. In P. Sojka, A. Horák, I. Kopeček, & K. Pala (Eds.), Text, speech and dialogue (pp. 21–28). Berlin: Springer.
Balahur, A., Kozareva, Z., & Montoyo, A. (2009). Determining the polarity and source of opinions expressed in political debates. In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing (pp. 468–480). Berlin: Springer.
Bansal, M., Cardie, C., & Lee, L. (2008). The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. In: Coling 2008: Companion volume: Posters (pp. 15–18). Coling 2008 Organizing Committee, Manchester, UK. https://www.aclweb.org/anthology/C08-2004.
Baturo, A., Dasandi, N., & Mikhaylov, S. J. (2017). Understanding state preferences with text as data: Introducing the un general debate corpus. Research and Politics, 4(2), 2053168017712821. https://doi.org/10.1177/2053168017712821.
Bhatia, S., P, D. (2018). Topic-specific sentiment analysis can help identify political ideology. In: Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 79–84). Association for Computational Linguistics, Brussels, Belgium. https://doi.org/10.18653/v1/W18-6212. https://www.aclweb.org/anthology/W18-6212.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.
Bonica, A. (2016). A data-driven voter guide for US elections: Adapting quantitative measures of the preferences and priorities of political elites to help voters learn about candidates. Journal of the Social Sciences, 2(7), 11–32. https://doi.org/10.7758/RSF.2016.2.7.02. https://www.rsfjournal.org/content/2/7/11.
Budhwar, A., Kuboi, T., Dekhtyar, A., & Khosmood, F. (2018). Predicting the vote using legislative speech. In: Proceedings of the 19th annual international conference on digital government research: governance in the data age, dg.o ’18 (pp. 35:1–35:10). ACM, New York, NY, USA. https://doi.org/10.1145/3209281.3209374.
Burfoot, C. (2008). Using multiple sources of agreement information for sentiment classification of political transcripts. In: Proceedings of the Australasian language technology association workshop 2008 (pp. 11–18). Hobart, Australia. https://www.aclweb.org/anthology/U08-1003.
Burfoot, C., Bird, S., & Baldwin, T. (2011). Collective classification of congressional floor-debate transcripts. In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 1506–1515). Association for Computational Linguistics, Portland, Oregon, USA. https://www.aclweb.org/anthology/P11-1151.
Burford, C., Bird, S., & Baldwin, T. (2015). Collective document classification with implicit inter-document semantic relationships. In: Proceedings of the fourth joint conference on lexical and computational semantics (pp. 106–116). Association for Computational Linguistics, Denver, Colorado. https://doi.org/10.18653/v1/S15-1012. https://www.aclweb.org/anthology/S15-1012.
Chen, W., Zhang, X., Wang, T., Yang, B., & Li, Y. (2017). Opinion-aware knowledge graph for political ideology detection. In: Proceedings of the 26th international joint conference on artificial intelligence, pp. 3647–3653.
Diermeier, D., Godbout, J. F., Yu, B., & Kaufmann, S. (2012). Language and ideology in congress. British Journal of Political Science, 42(1), 31–55.
Duthie, R., & Budzynska, K. (2018). A deep modular rnn approach for ethos mining. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, (IJCAI-18), pp. 4041–4047.
Dzieciątko, M. (2019). Application of text analytics to analyze emotions in the speeches. In E. Pietka, P. Badura, J. Kawa, & W. Wieclawek (Eds.), Information Technology in Biomedicine (pp. 525–536). Cham: Springer.
Frid-Nielsen, S. S. (2018). Human rights or security? Positions on asylum in european parliament speeches. European Union Politics, 19(2), 344–362. https://doi.org/10.1177/1465116518755954.
Glavaš, G., Nanni, F., & Ponzetto, S.P. (2017). Unsupervised cross-lingual scaling of political texts. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: Volume 2, short papers (pp. 688–693). Association for Computational Linguistics, Valencia, Spain. https://www.aclweb.org/anthology/E17-2109.
Glavaš, G., Nanni, F., & Ponzetto, S.P. (2019). Computational analysis of political texts: Bridging research efforts across communities. In: Proceedings of the 57th annual meeting of the association for computational linguistics: Tutorial abstracts (pp. 18–23). Association for Computational Linguistics, Florence, Italy. https://doi.org/10.18653/v1/P19-4004. https://www.aclweb.org/anthology/P19-4004.
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297.
Hirst, G., Riabinin, Y., & Graham, J. (2010). Party status as a confound in the automatic classification of political speech by ideology. In: Proceedings of 10th international conference on statistical analysis of textual data/10es Journées internationales d’Analyse statistique des Données Textuelles (JADT 2010), Rome, pp. 731–742.
Honkela, T., Korhonen, J., Lagus, K., & Saarinen, E. (2014). Five-dimensional sentiment analysis of corpora, documents and words. In T. Villmann, F. M. Schleif, M. Kaden, & M. Lange (Eds.), Advances in self-organizing maps and learning vector quantization (pp. 209–218). Cham: Springer.
Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American Journal of Political Science, 54(1), 229–247. https://doi.org/10.1111/j.1540-5907.2009.00428.x.
Iliev, I. R., Huang, X., & Gel, Y. R. (2019). Political rhetoric through the lens of non-parametric statistics: Are our legislators that different? Journal of the Royal Statistical Society Series A (Statistics in Society), 182(2), 583–604. https://doi.org/10.1111/rssa.12421.
Iyyer, M., Enns, P., Boyd-Graber, J., & Resnik, P. (2014). Political ideology detection using recursive neural networks. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 1113–1122). Association for Computational Linguistics, Baltimore, Maryland. https://doi.org/10.3115/v1/P14-1105. https://www.aclweb.org/anthology/P14-1105
Jensen, J., Naidu, S., Kaplan, E., Wilse-Samson, L., Gergen, D., Zuckerman, M., & Spirling, A. (2012). Political polarization and the dynamics of political language: Evidence from 130 years of partisan speech [with comments and discussion]. Brookings Papers on Economic Activity, pp. 1–81.
Ji, Y., & Smith, N.A. (2017) Neural discourse structure for text categorization. In: Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 996–1005). Association for Computational Linguistics, Vancouver, Canada. https://doi.org/10.18653/v1/P17-1092. https://www.aclweb.org/anthology/P17-1092.
Kaal, B., Maks, I., & van Elfrinkhof, A. (2014). From text to political positions: Text analysis across disciplines (Vol. 55). Philadelphia: John Benjamins Publishing Company.
Kapočiūtė-Dzikienė, J., & Krupavičius, A. (2014). Predicting party group from the Lithuanian parliamentary speeches. Information Technology and Control, 43(3), 321–332.
Kauffman, D., Khosmood, F., Kuboi, T., & Dekhtyar, A. (2018). Learning alignments from legislative discourse. In: Proceedings of the 19th annual international conference on digital government research: Governance in the data age, dg.o ’18 (pp. 119:1–119:2). ACM, New York, NY, USA. https://doi.org/10.1145/3209281.3209413.
Kim, I. S., Londregan, J., & Ratkovic, M. (2018). Estimating spatial preferences from votes and text. Political Analysis, 26(2), 210–229.
Lapponi, E., Søyland, M. G., Velldal, E., & Oepen, S. (2018). The talk of norway: A richly annotated corpus of the norwegian parliament, 1998–2016. Language Resources and Evaluation, 52(3), 873–893. https://doi.org/10.1007/s10579-018-9411-5.
Laver, M., Benoit, K., & Garry, J. (2003). Extracting policy positions from political texts using words as data. American Political Science Review, 97(2), 311–331.
Lefait, G., & Kechadi, T. (2010). Analysis of deputy and party similarities through hierarchical clustering. In: 2010 fourth international conference on digital society (pp. 264–268). https://doi.org/10.1109/ICDS.2010.49.
Li, X., Chen, W., Wang, T., & Huang, W. (2017). Target-specific convolutional bi-directional lstm neural network for political ideology analysis. In L. Chen, C. S. Jensen, C. Shahabi, X. Yang, & X. Lian (Eds.), Web and Big Data (pp. 64–72). Cham: Springer.
Liu, B. (2012). Sentiment analysis and opinion mining, synthesis lectures on human language technologies (Vol. 5). San Rafael: Morgan & Claypool Publishers.
Lowe, W., & Benoit, K. (2013). Validating estimates of latent traits from textual data using human judgment as a benchmark. Political Analysis, 21(3), 298–313.
Martineau, J., Finin, T., Joshi, A., & Patel, S. (2009). Improving binary classification on text problems using differential word features. In: Proceedings of the 18th ACM conference on information and knowledge management, CIKM ’09 (pp. 2019–2024). ACM, New York, NY, USA. https://doi.org/10.1145/1645953.1646291.
Menini, S., Nanni, F., Ponzetto, S.P., & Tonelli, S. (2017). Topic-based agreement and disagreement in US electoral manifestos. In: Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 2938–2944). Association for Computational Linguistics, Copenhagen, Denmark. https://doi.org/10.18653/v1/D17-1318. https://www.aclweb.org/anthology/D17-1318.
Menini, S., & Tonelli, S. (2016). Agreement and disagreement: Comparison of points of view in the political domain. In: Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers (pp. 2461–2470). The COLING 2016 Organizing Committee, Osaka, Japan. https://www.aclweb.org/anthology/C16-1232.
Mikhaylov, S., Laver, M., & Benoit, K. (2008). Coder reliability and misclassification in comparative manifesto project codings. In: 66th MPSA annual national conference.
Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and sentiment in tweets. ACM Transactions on Internet Technology, 17(3), 26:1–26:23. https://doi.org/10.1145/3003433.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). The PRISMA group: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
Monroe, B. L., Colaresi, M. P., & Quinn, K. M. (2008). Fightin’words: Lexical feature selection and evaluation for identifying the content of political conflict. Political Analysis, 16(4), 372–403.
Naderi, N., & Hirst, G. (2016). Argumentation mining in parliamentary discourse. In M. Baldoni, C. Baroglio, F. Bex, F. Grasso, N. Green, M. R. Namazi-Rad, M. Numao, & M. T. Suarez (Eds.), Principles and practice of multi-agent systems (pp. 16–25). Cham: Springer.
Nanni, F., Zirn, C., Glavaš, G., Eichorst, J., & Ponzetto, S.P. (2016) Topfish: topic-based analysis of political position in us electoral campaigns. In: PolText 2016: The international conference on the advances in computational analysis of political text: proceedings of the conference.
Nguyen, V.A., Boyd-Graber, J., Resnik, P., & Miler, K. (2015). Tea party in the house: A hierarchical ideal point topic model and its application to republican legislators in the 112th congress. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long papers) (pp. 1438–1448). Association for Computational Linguistics, Beijing, China. https://doi.org/10.3115/v1/P15-1139. https://www.aclweb.org/anthology/P15-1139.
Nguyen, V. A., Ying, J. L., & Resnik, P. (2013). Lexical and hierarchical topic regression. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 26 (pp. 1106–1114). Curran Associates Inc. http://papers.nips.cc/paper/5163-lexical-and-hierarchical-topic-regression.pdf.
Onyimadu, O., Nakata, K., Wilson, T., Macken, D., & Liu, K. (2014). Towards sentiment analysis on parliamentary debates in hansard. In W. Kim, Y. Ding, & H. G. Kim (Eds.), Semantic technology (pp. 48–50). Cham: Springer.
Owen, E. (2017). Exposure to offshoring and the politics of trade liberalization: Debate and votes on free trade agreements in the US house of representatives, 2001–2006. International Studies Quarterly, 61(2), 297–311. https://doi.org/10.1093/isq/sqx020.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011.
Plantié, M., Roche, M., Dray, G., & Poncelet, P. (2008). Is a voting approach accurate for opinion mining? In I. Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data warehousing and knowledge discovery (pp. 413–422). Berlin: Springer.
Proksch, S. O., Lowe, W., Wäckerle, J., & Soroka, S. (2019). Multilingual sentiment analysis: A new approach to measuring conflict in legislative speeches. Legislative Studies Quarterly, 44(1), 97–131. https://doi.org/10.1111/lsq.12218.
Proksch, S. O., & Slapin, J. B. (2010). Position taking in European parliament speeches. British Journal of Political Science, 40(3), 587–611.
Proksch, S. O., & Slapin, J. B. (2015). The politics of parliamentary debate. Cambridge: Cambridge University Press.
Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the english language. London: Longman.
Rauh, C. (2018). Validating a sentiment dictionary for german political language—a workbench note. Journal of Information Technology and Politics, 15(4), 319–343. https://doi.org/10.1080/19331681.2018.1485608.
Rheault, L. (2016) Expressions of anxiety in political texts. In Proceedings of the first workshop on nlp and computational social science (pp. 92–101). Association for Computational Linguistics, Austin, Texas. https://doi.org/10.18653/v1/W16-5612. https://www.aclweb.org/anthology/W16-5612.
Rheault, L., Beelen, K., Cochrane, C., & Hirst, G. (2016). Measuring emotion in parliamentary debates with automated textual analysis. PLoS One, 11(12), 1–18. https://doi.org/10.1371/journal.pone.0168843.
Richards, L. (2005). Handling qualitative data: A practical guide. London: Sage Publications.
Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, Š., & Sedlmair, M. (2018). More than bags of words: Sentiment analysis with word embeddings. Communication Methods and Measures, 12(2–3), 140–157. https://doi.org/10.1080/19312458.2018.1455817.
Sakamoto, T., & Takikawa, H. (2017). Cross-national measurement of polarization in political discourse: Analyzing floor debate in the US the japanese legislatures. In 2017 IEEE international conference on big data (Big Data) (pp. 3104–3110). https://doi.org/10.1109/BigData.2017.8258285.
Salah, Z. (2014). Machine learning and sentiment analysis approaches for the analysis of parliamentary debates. Ph.D. thesis, University of Liverpool.
Salah, Z., Coenen, F., & Grossi, D. (2013). Extracting debate graphs from parliamentary transcripts: A study directed at uk house of commons debates. In Proceedings of the fourteenth international conference on artificial intelligence and law, ICAIL ’13 (pp. 121–130). ACM, New York, NY, USA. https://doi.org/10.1145/2514601.2514615.
Salah, Z., Coenen, F., & Grossi, D. (2013). Generating domain-specific sentiment lexicons for opinion mining. In H. Motoda, Z. Wu, L. Cao, O. Zaiane, M. Yao, & W. Wang (Eds.), Advanced data mining and applications (pp. 13–24). Berlin: Springer.
Schwarz, D., Traber, D., & Benoit, K. (2017). Estimating intra-party preferences: Comparing speeches to votes. Political Science Research and Methods, 5(2), 379–396.
Seligman, M. E. P. (2012). Flourish: A visionary new understanding of happiness and well-being. New York: Simon and Schuster.
Sim, Y., Acree, B.D.L., Gross, J.H., & Smith, N.A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 91–101). Association for Computational Linguistics, Seattle, Washington, USA. https://www.aclweb.org/anthology/D13-1010.
Sokolova, M., & Lapalme, G. (2008). Verbs speak loud: Verb categories in learning polarity and strength of opinions. In S. Bergler (Ed.), Advances in artificial intelligence (pp. 320–331). Berlin: Springer.
Taddy, M. (2013). Multinomial inverse regression for text analysis. Journal of the American Statistical Association, 108(503), 755–770.
Thomas, M., Pang, B., & Lee, L. (2006). Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In Proceedings of the 2006 conference on empirical methods in natural language processing (pp. 327–335). Association for Computational Linguistics, Sydney, Australia. https://www.aclweb.org/anthology/W06-1639.
van der Zwaan, J.M., Marx, M., & Kamps, J. (2016). Validating cross-perspective topic modeling for extracting political parties’ positions from parliamentary proceedings. In Proceedings of the twenty-second European conference on artificial intelligence, ECAI’16 (pp. 28–36). IOS Press, Amsterdam, The Netherlands, The Netherlands. https://doi.org/10.3233/978-1-61499-672-9-28.
Vilares, D., & He, Y. (2017). Detecting perspectives in political debates. In Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 1573–1582). Association for Computational Linguistics, Copenhagen, Denmark. https://doi.org/10.18653/v1/D17-1165. https://www.aclweb.org/anthology/D17-1165.
Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys, 50(2), 25:1–25:33. https://doi.org/10.1145/3057270.
Yessenalina, A., Yue, Y., & Cardie, C. (2010). Multi-level structured models for document-level sentiment classification. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 1046–1056). Association for Computational Linguistics, Cambridge, MA. https://www.aclweb.org/anthology/D10-1102.
Yogatama, D., Kong, L., & Smith, N.A. (2015). Bayesian optimization of text representations. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 2100–2105). Association for Computational Linguistics, Lisbon, Portugal. https://doi.org/10.18653/v1/D15-1251. https://www.aclweb.org/anthology/D15-1251.
Yogatama, D., & Smith, N. (2014). Making the most of bag of words: Sentence regularization with alternating direction method of multipliers. In International conference on machine learning, pp. 656–664.
Yogatama, D., & Smith, N.A. (2014). Linguistic structured sparsity in text categorization. In Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 786–796). Association for Computational Linguistics, Baltimore, Maryland. https://doi.org/10.3115/v1/P14-1074. https://www.aclweb.org/anthology/P14-1074.