Sensitivity of the Surface Plasmon Polariton Waves at the Interface of Metal and Dielectric Medium Using Doppler Broadening Effect

Plasmonics - Tập 19 - Trang 123-129 - 2023
Qaisar Khan1, Aizaz Khan2, Bakht Amin Bacha2, Majid Khan1, Amir Khesro1
1Department of Physics, Abdul Wali Khan University, Mardan, Pakistan
2Department of Physics, University of Malakand, Chakdara, Dir (L) Pakistan

Tóm tắt

The angular interrogation of sensitivity of the surface plasmon polariton waves (SPPs) is investigated at the interface under the effect of Doppler broadening dielectric medium and silver metal using prism geometry. A useful manipulation over the sensitivity of SPPs is obtained with Doppler broadening effect and parameters of the probe and control fields. The maximum sensitivity is investigated to 3000 deg/RIU with control field detuning, while the manimum sensitivity is reported to 300 deg/RIU with doppler width. The modified result of sensitivity of this manuscript shows potential applications in radiations guiding, photovoltaic devices, and solar cells devices.

Tài liệu tham khảo

Farmani A, Mir A, Sharifpour Z (2018) Appl Surf Sci 453:358 Humayun K, Haneef M (2018) Can J Phys 96:98 Haneef M, Mohammad S, Akbar J, Arif S, Zahir M, Humayun K (2012) Chin Phys Lett 29:073201 Khan H, Haneef M (2017) Birefringence in a chiral medium, via temporal cloaking. Laser Phys 27:055201 Ahmad F et al (2022) Laser Phys 32:065206 Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature. https://doi.org/10.1038/nature01937 Pines D (1953) A collective description of electron interactions: IV. Electron interaction in metals. Phys Rev 92:626 Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D: Appl Phys 45:113001 Bludov YV, Vasilevskiy MI, Peres NMR (2010) EPL 92:68001 Orlita C et al (2012) Nano Lett 12:2470 Sreekanth KV et al (2012) Sci Rep 2:737 Zhang T, Shan F (2014) Development and application of surface plasmon polaritons on optical amplification. Nanomaterials. https://doi.org/10.1155/2014/495381 Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater. https://doi.org/10.1038/nmat2162 Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater. https://doi.org/10.1038/nmat2629 Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. https://doi.org/10.1038/nmat3151 Han Z, Bozhevolnyi SI (2013) Radiation guiding with surface plasmon polaritons. Reports on progress in physics Physical Society (Great Britain). https://doi.org/10.1088/0034-4885/76/1/016402 Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. https://doi.org/10.1021/nl070610y Mecklenburg M, Hubbard WA, White ER, Dhall R, Cronin SB, Aloni S, Regan BC (2015) Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices. Science (New York, N.Y.). 10.1126/science.aaa2433 Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571–606 Vala M (2015) Complex diffractive structures for surface plasmon resonance sensors. Doctoral Thesis, Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Czech Republic. Accessed on Nov. 23, 2020 Huang YH, Ho HP, Wu SY, Kong SK (2012) Detecting phase shifts in surface plasmon resonance: a review. Adv Opt Tech 1-12 Jiri Homola, Marek Piliarik (2006) Surface plasmon resonance based sensors. Springer Maji PS, Shukla MK, Das R (2018) Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sensors and Actuators B: Chemical 255(2018):729–734 Akbari E, Buntat Z, Afroozeh A, Pourmand SE, Farhang Y, Sanati P (2016) Silicene and graphene nano materials in gas sensing mechanism. RSC Advances 6(85):81647–81653 Islam MN, Yadav S, Haque MH, Munaz A, Islam F, Al Hossain MS, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJ (2017) Optical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics 92:668–678 Maji PS, Das R (2017) Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor. Journal of Lightwave Technology 35(14):2833–2839 Shahrokhian S, Ghalkhani M, Adeli M, Amini MK (2009) Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modifcation of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosensors and Bioelectronics 24(11):3235–3241 Khozeymeh F, Razaghi M (2018) Cylindrical optical resonators: fundamental properties and bio-sensing characteristics. Journal of Optics 20(4)045301 Xiao Y (2003) Doppler effect in larval biology: theory and applications. Ecological Modelling 165 Kash MM, Sautenkov VA (1999) Phys Rev Lett 82:5229 Kasapi A, Jain M, Yin GY, Haris SE (1995) Phys Rev Lett 74:2447 Rahman H, Jabar MSA, Khan AA, Ahmad I, Bacha BA (2014) Laser Phys 24:115404 Agarwal GS, Dey TN (2003) Slow light in Doppler-broadened two-level systems. Phys Rev A 68:063816 Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge Ahmad S, Ahmad A, Bacha BA, Khan AA, Abdul Jabar MS (2017) Eur Phys J Plus 132:506 Khan Q, Bacha BA, Khesro A (2023) The hybrid modes of sensitivity of surface plasmon polaritons using metal and chiral medium geometry. Plasmonics 1-9 Homola J, Yee SS, Myszka D (2008) Surface plasmon resonance biosensors. Optical Biosensors 185-242