Độ nhạy của khí hậu mô phỏng trong khu vực MENA liên quan đến các sơ đồ bề mặt đất khác nhau trong mô hình WRF

Katiana Constantinidou, Panos Hadjinicolaou1, George Zittis, Jos Lelieveld2,1
1The Cyprus Institute, Nicosia, Cyprus
2Department of Atmospheric Chemistry, Max Plank Institute for Chemistry, Mainz, Germany

Tóm tắt

Các ảnh hưởng của việc triển khai các sơ đồ bề mặt đất khác nhau (LSS) đối với khí hậu mô phỏng của khu vực Trung Đông và Bắc Phi (MENA) đã được điều tra bằng mô hình khu vực Nghiên cứu Thời tiết và Dự báo (WRF). Sáu mô phỏng đã được thực hiện với bốn LSS khác nhau (Noah, NoahMP, CLM, RUC) trong giai đoạn 2000–2010, sử dụng các phân tích khí tượng ERA-Interim với độ phân giải ngang 50 km. Sự sai lệch của các biến khí hậu bề mặt chính, bức xạ và lưu lượng hỗn loạn từ các lần chạy LSS khác nhau được trình bày so với sơ đồ Noah mặc định. Các biến khí hậu trung bình hàng năm được mô phỏng trong khu vực MENA (chỉ ra sự không chắc chắn) rơi vào khoảng 0,7 đến 2,4 ∘C cho nhiệt độ không khí, 2,0 đến 3,4 ∘C cho nhiệt độ đất, và 5 đến 25 mm/tháng (54–65%) cho lượng mưa. Sơ đồ Noah cho sai lệch ít hơn − 1 W/m2 so với cân bằng năng lượng bề mặt toàn miền và NoahMP là ít hơn − 2 W/m2, trong khi với CLM và RUC, sai lệch là 3–4 W/m2. Xem xét sự khác biệt giữa cân bằng năng lượng bề mặt từ các LSS khác nhau so với Noah tham chiếu, một phản ứng khí hậu bề mặt được tính toán, và độ nhạy khí hậu do LSS gây ra cho nhiệt độ không khí (và nhiệt độ đất) là 0,1 ∘C mỗi W/m2 và − 6 mm mỗi W/m2 cho lượng mưa. Phạm vi do LSS gây ra trong khí hậu mô phỏng có độ lớn tương tự với ước tính về sự thay đổi khí hậu cho khu vực, điều này nhấn mạnh tầm quan trọng của việc lựa chọn cẩn thận một sơ đồ bề mặt đất trong các mô phỏng khí hậu khu vực.

Từ khóa

#khí hậu MENA #mô hình WRF #sơ đồ bề mặt đất #Noah #độ nhạy khí hậu #năng lượng bề mặt

Tài liệu tham khảo

Almazroui M (2016a) Regcm4 in climate simulation over cordex-mena/arab domain: selection of suitable domain, convection and land-surface schemes. Int J Climatol 36(1):236–251. https://doi.org/10.1002/joc.4340

Almazroui M, Islam MN, Al-Khalaf AK, Saeed F (2016b) Best convective parameterization scheme within regCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/arab domain. Theor Appl Climatol 124(3-4):807–823. https://doi.org/10.1007/s00704-015-1463-5

Almazroui M, Nazrul Islam M, Saeed S, Alkhalaf AK, Dambul R (2017a) Assessment of uncertainties in projected temperature and precipitation over the arabian peninsula using three categories of CMIP5 multimodel ensembles. Earth Systems and Environment 1(2):1–20. https://doi.org/10.1007/s41748-017-0027-5

Almazroui M, Saeed S, Islam MN, Khalid MS, Alkhalaf AK, Dambul R (2017b) Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula: a comparison between different categories of CMIP3 models. Earth Systems and Environment 1(2):1–21. https://doi.org/10.1007/s41748-017-0012-z

Benjamin S, Bleck R, Brown J, Brundage K, Devenyi D, Grell G, Kim D, Manikin G, Schlatter T, Schwartz B, Smirnova T, Weygandt S, Alamos L (2004) Mesoscale weather prediction with the RUC Hybrid Isentropic-Sigma Coordinate Model and Data Assimilation System Operational Numerical Weather Prediction., the Symposium on the 50th Anniversary of Operational Numerical Weather Prediction pp 495–518

Betts AK (2009) Land-surface-atmosphere coupling in observations and mModels. Journal of Advances in Modeling Earth Systems, 1(3) https://doi.org/10.3894/JAMES.2009.1.4

Bucchignani E, Cattaneo L, Panitz HJ, Mercogliano P (2016) Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorog Atmos Phys 128(1):73–95. https://doi.org/10.1007/s00703-015-0403-3

Cheng S, Huang J, Ji F, Lin L (2017) Uncertainties of soil moisture in historical simulations and future projections. Journal of Geophysical Research 122(4):2239–2253. https://doi.org/10.1002/2016JD025871

Chotamonsak C, Salathė E P, Kreasuwan J, Chantara S, Siriwitayakorn K (2011) Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmos Sci Lett 12(2):213–219. https://doi.org/10.1002/asl.313

Constantinidou K, Hadjinicolaou P, Zittis G, Lelieveld J (2016) Effects of climate change on the yield of winter wheat in the eastern Mediterranean and Middle East. Clim Res 69(2):129–141. https://doi.org/10.3354/cr01395

Constantinidou K, Zittis G, Hadjinicolaou P (2019) Variations in the simulation of climate change impact indices due to different land surface schemes over the Mediterranean, Middle East and Northern Africa. Atmosphere 10(1):26. https://doi.org/10.3390/atmos10010026

Crawley MJ (2015) Statistics : an introduction using R, 2nd Edition, John Wiley & Sons

Davin EL, Maisonnave E, Seneviratne SI (2016) Is land surface processes representation a possible weak link in current Regional Climate Models?. Environmental Research Letters 11(7):1–8 . https://doi.org/10.1088/1748-9326/11/7/074027

De Meij A, Zittis G, Christoudias T (2018) On the uncertainties introduced by land cover data in high-resolution regional simulations. Meteorology and Atmospheric Physics 131(5):1213–1223. https://doi.org/10.1007/s00703-018-0632-3

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137(656):553–597. https://doi.org/10.1002/qj.828

Fita L, Polcher J, Giannaros TM, Lorenz T, Milovac J, Sofiadis G, Katragkou E, Bastin S (2019) CORDEX-WRF V1.3: Development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community. Geosci Model Dev 12(3):1029–1066. https://doi.org/10.5194/gmd-12-1029-2019

Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources 40(1):467–490. https://doi.org/10.1146/annurev-environ-102014-021217

Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin 58(3):175

Hartmann DL (2016) Chapter 10 - Climate sensitivity and feedback mechanisms. In: Hartmann DL (ed) Global Physical Climatology (Second Edition), second edi edn, Elsevier, Boston, pp 293–323, DOI https://doi.org/10.1016/B978-0-12-328531-7.00010-4, (to appear in print)

Katragkou E, Garciá-Diéz M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geoscientific Model Development 8(3):603–618. https://doi.org/10.5194/gmd-8-603-2015

Kim D, Kang S, Choi M (2016) Land surface models evaluation for two different land-cover types: cropland and forest. Terrestrial, Atmospheric and Oceanic Sciences 27(1):153–167. https://doi.org/10.3319/TAO.2015.09.14.02(Hy)

Knist S, Goergen K, Buonomo E, Christensen OB, Colette A, Cardoso RM, Fealy R, Fernández J, García-Díez M, Jacob D, Kartsios S, Katragkou E, Keuler K, Mayer S, van Meijgaard E, Nikulin G, Soares PMM, Sobolowski S, Szepszo G, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V, Simmer C (2017) Land-atmosphere coupling in euro-cordex evaluation experiments. Journal of Geophysical Research: Atmospheres 122(1):79–103. https://doi.org/10.1002/2016JD025476

Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang ZL, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems 3 (3):1–27. https://doi.org/10.1029/2011MS000045

Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 114(3-4):667–687. https://doi.org/10.1007/s10584-012-0418-4

Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change 137(1-2):245–260. https://doi.org/10.1007/s10584-016-1665-6

Lin Y, Dong W, Zhang M, Xie Y, Xue W, Huang J, Luo Y (2017) Causes of model dry and warm bias over central U.S. and impact on climate projections. Nature Communications 8(1):1–8. https://doi.org/10.1038/s41467-017-01040-2

Mitchell K, Ek M, Wong V, Lohmann D, Koren V, Schaake J, Duan Q, Gayno G, Moore B, Grunmann P, Tarpley D, Ramsay B, Chen F, Kim J, Hl Pan, Lin Y, Marshall C, Mahrt L, Meyers T, Ruscher P (2005) Noah land surface model (LSM) user’s guide. NCAR Research Application Laboratory (RAL), pp 1–26

Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. Journal of Climate 25 (18):6057–6078. https://doi.org/10.1175/JCLI-D-11-00375.1

Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research Atmospheres 116(12):1–19. https://doi.org/10.1029/2010JD015139

Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE (2010) Technical description of version 4.0 of the Community Land Model (CLM). NCAR/TN-478 + STR. Boulder, C(April):National Center for Atmospheric Research, papers2://publication/uuid/ 6858EE7A-C77E-4439-832D-CEC2791FBE BA

Pielke RA (2001) Influence of the spatail distribution of vegetation and soils on the predictions of cumulus convective rainfall. Reviews of Geophysics 39(2):151–177. https://doi.org/10.1029/1999RG000072

Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23(5):479–510. 10.1002/joc.893

Salathė E P, Leung LR, Qian Y, Zhang Y (2010) Regional climate model projections for the State of Washington. Clim Chang 102(1-2):51–75. 10.1007/s10584-010-9849-y

Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. SCIENCE 275(5299):502–509. https://doi.org/10.1126/science.275.5299.502

Seneviratne SI, Stoeckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. In: Bronnimann S, Luterbacher J, Ewen T, Diaz HF, Stolarski RS, Neu U (eds) Climate variability and extremes during the past 100 years, Swiss RE NCCR Climate; Swiss Natl Sci Fdn; ProClim; Univ Bern, Max & Elsa Beer Brawand Fdn, Springer, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS, Advances in Global Change Research, vol 33, pp 179–193, DOI https://doi.org/10.1007/978-1-4020-6766-2_12, (to appear in print)

Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Earth-Science Reviews Investigating soil moisture – climate interactions in a changing climate : a review. Earth Science Reviews 99(3-4):125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Sippel S, Zscheischler J, Mahecha MD, Orth R, Reichstein M, Vogel M, Seneviratne SI (2017) Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics. Earth System Dynamics 8(2):387–403. https://doi.org/10.5194/esd-8-387-2017

Soares PM, Cardoso RM, Miranda PM, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-interim for Portugal. Clim Dyn 39(9-10):2497–2522. https://doi.org/10.1007/s00382-012-1315-2

Soares PMM, Careto JAM, Cardoso RM, Goergen K, Trigo RM (2019) Land-atmosphere coupling regimes in a future climate in africa: From model evaluation to projections based on cordex-africa. Journal of Geophysical Research: Atmospheres 124(21):11118–11142. https://doi.org/10.1029/2018JD029473

von Storch H, Zwiers FW (1999) Statistical analysis in Climate Research. Cambridge University Press, Cambridge

Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Clim Dyn 41(3-4):755–774. https://doi.org/10.1007/s00382-013-1727-7

Zachariadis T, Hadjinicolaou P (2014) The effect of climate change on electricity needs - a case study from Mediterranean Europe. Energy 76:899–910. https://doi.org/10.1016/j.energy.2014.09.001

Zittis G, Hadjinicolaou P (2017) The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA-CORDEX domain. Int J Climatol 37(10):3847–3862. 10.1002/joc.4959

Zittis G, Hadjinicolaou P, Lelieveld J (2014a) Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. American Journal of Climate Change 03(05):490–511. https://doi.org/10.4236/ajcc.2014.35042

Zittis G, Hadjinicolaou P, Lelieveld J (2014b) Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Climate Research 59(1):27–37. https://doi.org/10.3354/cr01205

Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J (2016) Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional Environmental Change 16(7):1863–1876. https://doi.org/10.1007/s10113-014-0753-2

Zittis G, Hadjinicolaou P, Klangidou M, Proestos Y, Lelieveld J (2019) A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg Environ Chang 19(8):2621–2635. https://doi.org/10.1007/s10113-019-01565-w