Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective
Tóm tắt
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius–Clapeyron (CC) rate of 6–7%/°C–1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
Tài liệu tham khảo
Alexander LV (2016) Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim Extrem 11:4–16. doi:10.1016/j.wace.2015.10.007
Attema JJ, Loriaux JM, Lenderink G (2014) Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ Res Lett 9(1):014003. doi:10.1088/1748-9326/9/1/014003
Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172. doi:10.1002/2014GL062588
Bao J, Sherwood SC, Alexander LV, Evans JP (2017) Future increases in extreme precipitation exceed observed scaling rates. Nat Clim Change 7(2):128–132. doi:10.1038/nclimate3201
Barbero R, Fowler HJ, Lenderink G, Blenkinsop S (2017) Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys Res Lett 44(2):974983. doi:10.1002/2016GL071917
Berg P, Haerter JO (2013) Unexpected increase in precipitation intensity with temperature—a result of mixing of precipitation types? Atmos Res 119:56–61. doi:10.1016/j.atmosres.2011.05.012
Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6(3):181–185. doi:10.1038/ngeo1731
Bisselink B, Dolman AJ (2008) Precipitation recycling: moisture sources over Europe using ERA-40 Data. J Hydrometeorol 9(5):1073–1083. doi:10.1175/2008JHM962.1
Cassola F, Ferrari F, Mazzino A, Miglietta MM (2016) The role of the sea on the flash floods events over Liguria (northwestern Italy). Geophys Res Lett 43(7):3534–3542. doi:10.1002/2016GL068265
Chan SC, Kendon EJ, Roberts NM, Fowler HJ, Blenkinsop S (2016) Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat Geosci 9(1):24–28. doi:10.1038/ngeo2596
Contractor S, Alexander LV, Donat MG, Herold N (2015) How well do gridded datasets of observed daily precipitaion compare over Australia? Advances in Meteorology p 325718. doi:10.1155/2015/325718
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hölm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thëpaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828
Drobinski P, Alonzo B, Bastin S, Da Silva N, Muller C (2016) Scaling of precipitation extremes with temperature in the French Mediterranean region: what explains the hook shape? J Geophys Res Atmos 121(7):3100–3119. doi:10.1002/2015JD023497
Drobinski P, Silva ND, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, Güttler I, Kotroni V, Li L, Morin E, Önol B, Quintana-Segui P, Romera R, Torma CZ (2016) Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Climate Dynamics pp 1–21, doi:10.1007/s00382-016-3083-x
Forchheimer P (1913) Der Wolkenbruch im Grazer Hügelland vom 16. Juli 1913. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, mathematisch–naturw Klasse, Abt 2a 122:2100–2109
Formayer H, Fritz A (2016) Temperature dependency of hourly precipitation intensities—surface versus cloud layer temperature. Int J Climatol 37(1):1–10. doi:10.1002/joc.4678
Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18(8):873–900. doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9
Gaál L, Molnar P, Szolgay J (2014) Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol Earth Syst Sci 18(5):1561–1573. doi:10.5194/hess-18-1561-2014
Giorgi F, Torma C, Coppola E, Ban N, Schar C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nature Geoscience 9(8):2016/07/11/online, DOI: 10.1038/NGEO2761, wOS:000382137900013
Haerter JO, Berg P (2009) Unexpected rise in extreme precipitation caused by a shift in rain type? Nat Geosci 2(6):372–373. doi:10.1038/ngeo523
Haiden T, Kann A, Wittmann C, Pistotnik G, Bica B, Gruber C (2010) The integrated nowcasting through comprehensive analysis (INCA) system and its validation over the eastern Alpine region. Weather Forecast 26(2):166–183. doi:10.1175/2010WAF2222451.1
Hiebl J, Frei C (2016) Daily temperature grids for Austria since 1961-concept, creation and applicability. Theor Appl Climatol 124(1–2):161–178. doi:10.1007/s00704-015-1411-4
Hofstaetter M, Chimani B (2012) Van Bebber’s cyclone tracks at 700 hPa in the Eastern Alps for 1961–2002 and their comparison to Circulation Type Classifications. Meteorologische Zeitschrift 21(5):459–473. doi:10.1127/0941-2948/2012/0473
Hofstätter M, Jacobeit J, Homann M, Lexer A, Chimani B, Philipp A, Beck C, Ganekind M (2015) WETRAX - Weather patterns, cyclone tracks and related precipitation extremes. Grossflächige Starkniederschläge im Klimawandel in Mitteleuropa. Projektendbericht, Geographica Augustana, p 19
hydroConsult GmbH (2011) Hochwasserdokumentation Wölzertal 7.7.2011. Tech. rep., Amt der Steiermärkischen Landesregierung FA19B
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/CBO9781107415324
Ivancic TJ, Shaw SB (2016) A U.S.-based analysis of the ability of the Clausius–Clapeyron relationship to explain changes in extreme rainfall with changing temperature. Journal of Geophysical Research: Atmospheres 121(7):30663078, doi:10.1002/2015JD024288
Jones JAA (2014) Global hydrology: processes, resources and environmental management. Routledge, London
Kabas T, Foelsche U, Kirchengast G (2011) Seasonal and annual trends of temperature and precipitation within 1951/1971–2007 in south-eastern Styria, Austria. Meteorologische Zeitschrift 20(3):277–289. doi:10.1127/0941-2948/2011/0233
Kann A, Meirold-Mautner I, Schmid F, Kirchengast G, Fuchsberger J, Meyer V, Tächler L, Bica B (2015) Evaluation of high-resolution precipitation analyses using a dense station network. Hydrol Earth Syst Sci 19(3):1547–1559. doi:10.5194/hess-19-1547-2015
Lenderink G, van Meijgaard E (2009) Unexpected rise in extreme precipitation caused by a shift in rain type? Nat Geosci 2(6):373–373. doi:10.1038/ngeo524
Lenderink G, Ev Meijgaard (2010) Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5(2):025208. doi:10.1088/1748-9326/5/2/025208
Lepore C, Veneziano D, Molini A (2015) Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys Res Lett 42(1):74–83. doi:10.1002/2014GL062247
Loriaux JM, Lenderink G, De Roode SR, Siebesma AP (2013) Understanding convective extreme precipitation scaling using observations and an entraining plume model. J Atmos Sci 70(11):3641–3655. doi:10.1175/JAS-D-12-0317.1
Loriaux JM, Lenderink G, Siebesma AP (2016a) Large-scale controls on extreme precipitation. J Clim 30(3):955–968. doi:10.1175/JCLI-D-16-0381.1
Loriaux JM, Lenderink G, Siebesma AP (2016b) Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J Geophys Res Atmos 121(10):5471–5487. doi:10.1002/2015JD024274
McMillen DP (2012) Quantile regression for spatial data. Springer-Verlag, Berlin
Messmer M, Gomez-Navarro JJ, Raible CC (2015) Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth Syst Dyn 6(2):541–553. doi:10.5194/esd-6-541-2015
Molnar P, Fatichi S, Gaál L, Szolgay J, Burlando P (2015) Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol Earth Syst Sci 19(4):1753–1766. doi:10.5194/hess-19-1753-2015
Moseley C, Hohenegger C, Berg P, Haerter JO (2016) Intensification of convective extremes driven by cloud-cloud interaction. Nat Geosci 9(10):748–752. doi:10.1038/ngeo2789
Munzar J, Ondracek S, Auer I (2011) Central European one-day precipitation records. Moravian Geograph Rep 19(1):32–40
O’Gorman PA (2015) Precipitation extremes under climate change. Curr Clim Change Rep 1(2):49–59. doi:10.1007/s40641-015-0009-3
Panziera L, James CN, Germann U (2015) Mesoscale organization and structure of orographic precipitation producing flash floods in the Lago Maggiore region. Quart J R Meteorol Soc 141(686):224–248. doi:10.1002/qj.2351
Philipp A, Beck C, Huth R, Jacobeit J (2016) Development and comparison of circulation type classifications using the COST 733 dataset and software. Int J Climatol 36(7):2673–2691. doi:10.1002/joc.3920
Prein AF, Gobiet A (2016) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int J Climatol 37(1):305–327. doi:10.1002/joc.4706
Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48–52. doi:10.1038/nclimate3168
Prettenthaler F, Podesser A, Pilger H (2010) Klimaatlas Steiermark. Periode 1971-2000. Eine anwenderorientierte Klimatographie. No. 4 in Studien zum Klimawandel in Österreich, ÖAW
Schicker I, Radanovics S, Seibert P (2010) Origin and transport of Mediterranean moisture and air. Atmos Chem Phys 10(11):5089–5105. doi:10.5194/acp-10-5089-2010
Schiemann R, Frei C (2010) How to quantify the resolution of surface climate by circulation types: an example for Alpine precipitation. Phys Chem Earth, Parts A/B/C 35(9–12):403–410. doi:10.1016/j.pce.2009.09.005
Schocklitsch A (1914) Die Hochwasserkatastrophe in Graz am 16. Juli 1913. Zeitschrift des Österreichischen Ingenieur- und Architekten-Vereines 27:511–518
Seibert P, Frank A, Formayer H (2006) Synoptic and regional patterns of heavy precipitation in Austria. Theor Appl Climatol 87(1–4):139–153. doi:10.1007/s00704-006-0198-8
Sodemann H, Zubler E (2010) Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int J Climatol 30(7):947–961. doi:10.1002/joc.1932
Volosciuk C, Maraun D, Semenov VA, Tilinina N, Gulev SK, Latif M (2016) Rising mediterranean sea surface temperatures amplify extreme summer precipitation in central Europe. Sci Rep 6:32450. doi:10.1038/srep32450
Wang G, Wang D, Trenberth KE, Erfanian A, Yu M, Bosilovich MG, Parr DT (2017) The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat Clim Change 7(4):268–274. doi:10.1038/nclimate3239
Wasko C, Sharma A (2015) Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat Geosci 8(7):527–529. doi:10.1038/ngeo2456
Wasko C, Sharma A, Johnson F (2015) Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophysical Research Letters 42(20):2015GL066274. doi:10.1002/2015GL066274
Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52(3):522–555. doi:10.1002/2014RG000464
Zhang X, Zwiers FW, Li G, Wan H, Cannon AJ (2017) Complexity in estimating past and future extreme short-duration rainfall. Nat Geosci 10(4):255–259. doi:10.1038/ngeo2911