Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties

CEAS Aeronautical Journal - Tập 11 - Trang 33-47 - 2019
Andrea Da Ronch1, Marco Panzeri2, Jernej Drofelnik1, Roberto d’Ippolito2
1Engineering and Physical Sciences, University of Southampton, Southampton, UK
2Noesis Solutions N.V., Leuven, Belgium

Tóm tắt

The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.

Tài liệu tham khảo

Bailey, S.C.C., Vallikivi, M., Hultmark, M., Smits, A.J.: Estimating the value of von Karmans constant in turbulent pipe flow. J. Fluid Mech. 749, 79–98 (2014). https://doi.org/10.1017/jfm.2014.208 Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822—pressure distributions, boundary layer and wake measurements. AGARD Report AR 138, Appendix A-2D Configurations (1979) Da Ronch, A., Ghoreyshi, M., Badcock, K.J.: On the generation of flight dynamics aerodynamic tables by computational fluid dynamics. Progress Aerosp. Sci. 47(8), 597–620 (2011). https://doi.org/10.1016/j.paerosci.2011.09.001 Da Ronch, A., Panzeri, M., Abd Bari, M.A., d’Ippolito, R., Franciolini, M.: Adaptive design of experiments for efficient and accurate estimation of aerodynamic loads. Aircr. Eng. Aerosp. Technol. 89(4), 558–569 (2017). https://doi.org/10.1108/AEAT-10-2016-0173 Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: SU2: an open-source suite for multiphysics simulation and design. AIAA J. 54(3), 828–846 (2015). https://doi.org/10.2514/1.J053813 Edeling, W.N., Cinnella, P., Dwight, R.P.: Predictive rans simulations via bayesian model-scenario averaging. J. Comput. Phys. 275, 65–91 (2014). https://doi.org/10.1016/j.jcp.2014.06.052 Franciolini, M., Da Ronch, A., Drofelnik, J., Raveh, D.: Efficient infinite-swept wing solver for steady and unsteady compressible flows. Aerosp. Sci. Technol. 72, 217–229 (2017). https://doi.org/10.1016/j.ast.2017.10.034 Hosder, S., Walters, R.W., Balch, M.: Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA J. 48(12), 2721–2730 (2010). https://doi.org/10.2514/1.39389 Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time—stepping schemes. In: 14th Fluid and Plasma Dynamics Conference, Fluid Dynamics and Co-located Conferences, Palo Alto, CA (1981). https://doi.org/10.2514/6.1981-1259 Li, Z., Hoagg, J.B., Martin, A., Bailey, S.C.C.: Retrospective cost adaptive Reynolds-averaged navier-stokes \(k-\omega\) model for data-driven unsteady turbulent simulations. J. Comput. Phys. 357, 353–374 (2018). https://doi.org/10.1016/j.jcp.2017.11.037 Li, Z., Zhang, H., Bailey, S.C.C., Hoagg, J.B., Martin, A.: A data-driven adaptive reynolds-averaged navier-stokes \(k-\omega\) model for turbulent flow. J. Comput. Phys. 345, 111–131 (2017). https://doi.org/10.1016/j.jcp.2017.05.009 Papadimitriou, D.I., Papadimitriou, C.: Bayesian uncertainty quantification of turbulence models based on high-order adjoint. Comput. Fluids 120, 82–97 (2015). https://doi.org/10.1016/j.compfluid.2015.07.019 Schaefer, J., Hosder, S., West, T., Rumsey, C., Carlson, J.R., Kleb, W.: Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows. AIAA J. 55, 195–213 (2017). https://doi.org/10.2514/1.J054902 Schaefer, J.A.: Uncertainty quantification of turbulence model closure coefficients for transonic wall—bounded flows. M.Sc. Thesis, Missouri University of Science and Technology (2015) Schittkowski, K.: NLPQL: a Fortran subroutine for solving constrained nonlinear programming problems. Ann. Oper. Res. 5(2), 485–500 (1986). https://doi.org/10.1007/BF02022087 Schmitt, V., Charpin, F.: Pressure distributions on the ONERA-M6–wing at transonic Mach numbers. AGARD Report AR 138, Appendix B—3D Configurations (1979) Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS) (2006) Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: CFD vision 2030 study: a path to revolutionary computational aerosciences. NASA/CR-20140218178 (2014) Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6 Sørensen, N.N.: CFD modelling of laminar-turbulent transition for airfoils and rotors using the \(\gamma -\widetilde{{Re}}_{\vartheta }\). Wind Energy 12, 715–733 (2009). https://doi.org/10.1002/we.325 Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rec. Aérosp. 275, 5–21 (1994) Storn, R., Price, K.: Differential evolution—a simple and efcient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/a:1008202821328 Tijdeman, H., Seebass, R.: Transonic flow past oscillating airfoils. Annu. Rev. Fluid Mech. 12, 181–222 (1980) Yang, G., Da Ronch, A., Drofelnik, J., Xie, Z.T.: Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2. Aerosp. Sci. Technol. 81, 362–374 (2018). https://doi.org/10.1016/j.ast.2018.08.012