Sensitivity analysis of queueing models based on polynomial chaos approach

Arabian Journal of Mathematics - Tập 10 - Trang 527-542 - 2021
Lounes Ameur1, Lahcene Bachioua2
1Department of Technology, 20 August 1955 University of Skikda, Skikda, Algeria
2Department of Basic Sciences, Preparatory Year, University of Ha’il, Hail, Kingdom of Saudi Arabia

Tóm tắt

Queueing systems are modeled by equations which depend on a large number of input parameters. In practice, significant uncertainty is associated with estimates of these parameters, and this uncertainty must be considered in the analysis of the model. The objective of this paper is to propose a sensitivity analysis approach for a queueing model, presenting parameters that follow a Gaussian distribution. The approach consists in decomposing the output of the model (stationary distribution of the model) into a polynomial chaos. The sensitivity indices, allowing to quantify the contribution of each parameter to the variance of the output, are obtained directly from the coefficients of decomposition. The proposed approach is then applied to M/G/1/N queueing model. The most influential parameters are highlighted. Finally several numerical and data examples are sketched out to illustrate the accuracy of the proposed method and compare them with Monte Carlo simulation. The results of this work will be useful to practitioners in various fields of theoretical and applied sciences.

Tài liệu tham khảo

Ameur, L.; Berdjoudj, L.; Abbas, K.: Sensitivity analysis of the M/M/1 retrial queue with working vacations and vacation interruption. Int. J. Manag. Sci. Eng. Manag. 14(4), 293–303 (2019). https://doi.org/10.1080/17509653.2019.1566034 Arzuaga, E.; Kaeli, D.R.: An M/G/1 queue model for multiple applications on storage area networks. In: Proceedings for the 11th Workshop on Computer Architecture and Evaluation (2008) using Commercial Workloads CAECW 11, 25–32 (2008) Blatman, G.: Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis. Ph.D. thesis, Universite Blaise Pascal, Clermont-Ferrand (2009) Berveiller, M.; Sudret, B.; Lemaire, M.: Stochastic finite element: a non intrusive approach by regression. Revue Europeenne de Mecanique Numerique 15(1–2–3), 81–92 (2006) Blatman, G.: Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis. These de doctorat, Universite Blaise Pascal-Clermont II (2009) Blatman, G.; Sudret, B.: Sparse polynomial chaos expansion and adaptive stochastic finite element using a regression approach. Comptes Rendus de Mecanique 336(6), 518–523 (2008) Cacuci, D.G.; Ionescu-Bujor, M.; Navon, I.M.: Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems, vol. 2. Chapman and Hall/CRC, Boca Raton (2005) Cukier, R.I., Levine, R.I., et Shuler, K.E.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26(1), 1–42 (1978) Daigle, J.N.: The basic M/G/1 queueing system. In: Queueing theory with applications to packet telecommunication. Springer Science & Business Media (2005) Ghanem, R.G.; Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, pp. 101–119. Springer, New York, NY (1991) Gugole, F.; Coffeng, L.E.; Edeling, W.; Sanderse, B.; de Vlas, S.J.; Crommelin, D.: Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model. medRxiv (2021) Hamza, S.; Anstett-Collin, F.; Kiébré, R.; Basset, M.: Analyse de sensibilité basée sur les polynomes du chaos pour des modéles de type boite noire. In: 7 éme Conférence Internationale Francophone d’Automatique, CIFA, Grenoble, France (2012) Jacques, J.; Lavergne, C.; Devictor, N.: Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Saf. 91(10–11), 1126–1134 (2006) Knuth, D.: The Art of Computer Programming: Generating All Combinations and Partitions, vol. 4. Addison-Wesley Professional. Fascicle 3 (2005) Knuth, D.: The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming). Addison-Wesley Professional (2005) Mittal, H.; Sharma, N.: A probabilistic model for the assessment of queuing time of coronavirus disease (COVID-19) patients using queuing model. Technology 11(8), 22–31 (2020) Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993) Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002) Saltelli, A.; Chan, K.; Scott, E.M.: Sensitivity Analysis. Wiley, West Sussex (2000) Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, West Sussex (2004) Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-Interscience, West Sussex (2008) Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938) Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938) Xiu, D.; Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002) Xiu, D.; Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003) Zhao, Y.G.; Ono, T.: Third-moment standardization for structural reliability analysis. J. Struct. Eng. 126(6), 724–732 (2000)