Sensitivity Analysis of Stochastic Constraint and Variational Systems via Generalized Differentiation

Springer Science and Business Media LLC - Tập 31 - Trang 1-29 - 2023
Boris S. Mordukhovich1, Pedro Pérez-Aros2
1Department of Mathematics, Wayne State University, Detroit, USA
2Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile

Tóm tắt

This paper conducts sensitivity analysis of random constraint and variational systems related to stochastic optimization and variational inequalities. We establish efficient conditions for well-posedness, in the sense of robust Lipschitzian stability and/or metric regularity, of such systems by employing and developing coderivative characterizations of well-posedness properties for random multifunctions and efficiently evaluating coderivatives of special classes of random integral set-valued mappings that naturally emerge in stochastic programming and stochastic variational inequalities.

Tài liệu tham khảo

Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977) Chen, X., Wets, R.J.-B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations, SIAM. J. Optim. 22, 649–673 (2012) Correa, R., Hantoute, A., Pérez-Aros, P.: Characterizations of the subdifferential of convex integral functions under qualification conditions. J. Func. Anal. 277, 227–254 (2019) Correa, R., Hantoute, A., Pérez-Aros, P.: Subdifferential calculus rules for possibly nonconvex integral functions, SIAM. J. Control Optim. 58, 462–484 (2020) Correa, R., Hantoute, A., Pérez-Aros, P.: Qualification conditions-free characterization of the ε-subdifferential of convex integral functions, Appl. Math. Optim. 83, 1709–1737 (2021) Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edition. Springer, New York (2014) Gürkan, G., Yonca Özge, A., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999) Henrion, R., Römisch, W.: On M-stationary point for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling. Appl. Math. 52, 473–494 (2007) Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980) Mordukhovich, B.S.: Sensitivity Analysis in Nonsmooth Optimization. In: Field, D.A., Komkov, V. (eds.) Theoretical Aspects of Industrial Design, SIAM Proc. Appl. Math., vol. 58, pp. 32–46. Philadelphia (1992) Mordukhovich, B.S.: Complete characterizations of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340, 1–35 (1993) Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II: Applications. Springer, Berlin (2006) Mordukhovich, B.S.: Failure of metric regularity for major classes of variational systems. Nonlinear Anal. 69, 918–924 (2008) Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham, Switzerland (2018) Mordukhovich, B.S., Pérez-Aros, P.: New extremal principles with applications to stochastic and semi-infinite programming. Math. Program. 189, 527–553 (2021) Mordukhovich, B.S., Pérez-Aros, P.: Generalized sequential differential calculus for expected-integral functionals. Set-Valued Var. Anal. 29, 621–644 (2021) Mordukhovich, B.S., Pérez-Aros, P.: Generalized Leibniz rules and Lipschitzian stability for expected-integral mappings. SIAM, J. Optim. 31, 3212–3246 (2021) Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM, J. Optim. 22, 953–986 (2012) Patriksson, M., Wynter, L.: Stochastic mathematical programs with equilibrium constraints. Oper. Res. Lett. 25, 159–167 (2005) Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 3rd edn. SIAM, Philadelphia, PA (2021) Walkup, D.W., Wets, R.J.-B.: A Lipschitzian characterization of convex polyhedra. Proc. Amer. Math. Soc. 23, 167–173 (1969)