Sensitivity Analysis for Key Payloads and Orbital Parameters from the Next-Generation Moon-Gradiometer Satellite Gravity Program

Geophysical surveys - Tập 36 - Trang 111-137 - 2014
Wei Zheng1, Houtse Hsu1, Min Zhong1, Meijuan Yun2
1State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
2College of Science, Wuhan University of Science and Technology, Wuhan, China

Tóm tắt

This research principally focuses on the requirements analysis in terms of the next-generation Moon-Gradiometer satellite gravity program. Firstly, the new single and combined analytical error models applied to estimate the accuracy of the lunar gravitational field (e.g., geopotential coefficients, cumulative geoid height and cumulative gravity anomaly) influenced by the main error sources consisting of the satellite gravity gradient and satellite orbital position are created for the next-generation Moon-Gradiometer program. Secondly, the dependability of the new single and combined analytical error models is validated by the conformity of the cumulative lunar geoid height errors between the gravity gradient and orbital position. Finally, taking the current GRAIL (Gravity Recovery and Interior Laboratory) satellite gravity mission for reference, the sensitivity analysis for the next-generation Moon-Gradiometer gravity satellite system is comprehensively carried out. We propose to equip this with the new-type pivotal payloads of the lunar spacecraft comprising the electrostatic suspension gravity gradiometer and the drag-free control system and bring forward the matching measurement precision of the space-borne instruments (involving 3 × 10−12/s2 in the gravity gradient and 60 m in the orbital position) and the preferred orbital parameters (including an orbital altitude of 25 km, an observation period of 28 days and a sampling interval of 1 s) in the next-generation Moon-Gradiometer program.

Tài liệu tham khảo

Akim EL, Vlasova ZP (1977) Model of the lunar gravitational field, derived from luna 10, 12, 14, 15 and 22 tracking data. DAN SSSR 235:38–41 Bills BG, Ferrari AJ (1980) A harmonic analysis of lunar gravity. J Geophys Res 85(B2):1013–1025 Ferrari AJ (1972) An empirically derived lunar gravity field. Moon 5:390–410 Ferrari AJ (1977) Lunar gravity: a harmonic analysis. J Geophys Res 82(20):3065–3084 Goossens S, Matsumoto K, Liu Q, Kikuchi F, Sato K, Hanada H, Ishihara Y, Noda H, Kawano N, Namiki N, Iwata T, Lemoine FG, Rowlands DD, Harada Y, Chen M (2011a) Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J Geod 85(4):205–228 Goossens S, Matsumoto K, Kikuchi F, Liu Q, Hanada H, Lemoine FG, Rowlands DD, Ishihara Y, Noda H, Namiki N, Iwata T, Sasaki S (2011b) Improved high-resolution lunar gravity field model from SELENE and historical tracking data, AGU Fall Meeting, Abstract P44B-05 Gross RS, Chao BF (2006) The rotational and gravitational signature of the December 26, 2004 Sumatran earthquake. Surv Geophys 27(6):615–632 Han SC, Mazarico E, Rowlands DD, Lemoine FG, Goossens S (2011) New analysis of Lunar Prospector radio tracking data brings the nearside gravity field of the Moon with an unprecedented resolution. Icarus 215(2):455–459 Konopliv AS (1994) Private Communication Konopliv AS, Sjogren WL, Wimberly RN, Cook RA, Alwar V (1993) A high resolution lunar gravity field and predicted orbit behavior. AAS/AIAA Astrodynamics Specialist Conference, Victoria, BC, Canada, August, p 93–662 Konopliv AS, Yuan DN (1999) Lunar Prospector 100th degree gravity model development. Lunar Planetary Science Conference 30th, Abstract 1067. Lunar and Planetary Institutes, Houston Konopliv AS, Binder AB, Hood LL, Kucinskas AB, Sjogren WL, Williams JG (1998) Improved gravity field of the Moon from lunar prospector. Science 281(5382):1476–1480 Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan DN (2001) Recent gravity models as a result of the lunar prospector mission. Icarus 150:1–18 Konopliv AS, Park RS, Yuan DN, Asmar SW, Watkins MM, Williams JG, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith DE, Zuber MT (2013) The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J Geophys Res Planets 118(7):1415–1434 Konopliv AS, Park RS, Yuan DN, Asmar SW, Watkins MM, Williams JG, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith DE, Zuber MT (2014) High-resolution lunar gravity fields from the GRAIL primary and extended missions. Geophys Res Lett 41(5):1452–1458 Lemoine FG, Smith DE, Zuber MT, Neumann GA, Rowlands DD (1997) A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J Geophys Res 102:16339–16359 Lemoine FG, Goossens S, Sabaka TJ, Nicholas JB, Mazarico E, Rowlands DD, Loomis BD, Chinn DS, Caprette DS, Neumann GA, Smith DE, Zuber MT (2013) High-degree gravity models from GRAIL primary mission data. J Geophys Res Planets 118(8):1676–1698 Lemoine FG, Goossens S, Sabaka TJ, Nicholas JB, Mazarico E, Rowlands DD, Loomis BD, Chinn DS, Neumann GA, Smith DE, Zuber MT (2014) GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys Res Lett 41(10):3382–3389 Liu AS, Laing PS (1971) Lunar gravity analysis from long term effects. Science 173(4001):1017–1020 Lorell J, Sjogren WL (1968) Lunar gravity: preliminary estimates from lunar orbiter. Science 159:625–627 Matsumoto K, Goossens S, Ishihara Y, Liu Q, Kikuchi F, Iwata T, Namiki N, Noda H, Hanada H, Kawano N, Lemoine FG, Rowlands DD (2010) An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J Geophys Res 115(E6). doi:10.1029/2009JE003499 Mazarico E, Lemoine FG, Han SC, Smith DE (2010) GLGM-3: a degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J Geophys Res 115:E05001 Michael WH, Blackshear WT (1972) Recent results on the mass, gravitational field and moments of inertia of the Moon. Moon 3:388–402 Namiki N, Iwata T, Matsumoto K, Hanada H, Noda H, Goossens S, Ogawa M, Kawano N, Asari K, Tsuruta S, Ishihara Y, Liu Q, Kikuchi F, Ishikawa T, Sasaki S, Aoshima C, Kurosawa K, Sugita S, Takano T (2009) Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323:900–905 Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29(4–5):361–374 Rummel R, Horwath M, Yi WY, Albertella A, Bosch W, Haagmans R (2011) GOCE, satellite gravimetry and Antarctic mass transports. Surv Geophys 32(4–5):643–657 Sagitov MU, Bodri B, Nazarenko VS, Tadzhidinov KG (1986) Lunar Gravimetry, Vol. 35 of International Geophysics Series. Academic Press, New York Zheng W, Xu HZ, Zhong M, Yun MY (2011a) Demonstration of requirement on future lunar satellite gravity exploration mission based on interferometric laser intersatellite ranging principle. J Astronaut 32(4):922–932 Zheng W, Xu HZ, Zhong M, Yun MJ, Zhou XH (2011b) Accurate and rapid determination of GOCE Earth’s gravitational field using time-space-wise approach associated with Kaula regularization. Chin J Geophys 54(1):240–249 Zheng W, Xu HZ, Zhong M, Liu CS, Yun MJ (2012a) Progress in international lunar exploration programs. Prog Geophys 27(6):2296–2307 Zheng W, Xu HZ, Zhong M, Yun MJ (2012b) Progress in lunar gravitational field models and operation of future lunar satellite gravity gradiometry mission in China. Sci Surv Mapp 37(2):5–9 Zheng W, Xu HZ, Zhong M, Yun MJ (2012c) Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. J Geodyn 53:1–7 Zheng W, Xu HZ, Zhong M, Yun MJ (2012d) Precise recovery of the Earth’s gravitational field with GRACE: intersatellite range-rate interpolation approach. IEEE Geosci Remote Sens Lett 9(3):422–426 Zheng W, Xu HZ, Zhong M, Yun MJ (2013a) China’s first-phase Mars exploration program: Yinghuo-1 orbiter. Planet Space Sci 86:155–159 Zheng W, Xu HZ, Zhong M, Liu CS, Yun MJ (2013b) Efficient and rapid accuracy estimation of the Earth’s gravitational field from next-generation GOCE Follow-On by the analytical method. Chin Phys B 22(4):049101-1–049101-8 Zheng W, Xu HZ, Zhong M, Yun MJ (2014a) Requirements analysis for future satellite gravity mission Improved-GRACE. Surv Geophys 35(4). doi:10.1007/s10712-014-9306-y Zheng W, Xu HZ, Zhong M, Liu CS (2014b) Progress on international Venus exploration programs and implement of Venus gravity gradiometry mission in China. J Geod Geodyn 34(1):8–14 Zuber MT, Smith DE, Lemoine FG, Neumann GA (1994) The shape and internal structure of the moon from the Clementine mission. Science 266(5192):1839–1843 Zuber MT, Smith DE, Watkins MM, Asmar SW, Konopliv AS, Lemoine FG, Melosh HJ, Neumann GA, Phillips RJ, Solomon SC, Wieczorek MA, Williams JG, Goossens S, Kruizinga G, Mazarico E, Park RS, Yuan DN (2013) Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339:668–671