Sensing Population Distribution from Satellite Imagery Via Deep Learning:Model Selection, Neighboring Effects, and Systematic Biases

Xiao Huang1, Di Zhu2, Fan Zhang3, Tao Liu4, Xiao Li5, Lei Zou6
1Department of Geosciences, University of Arkansas, Fayetteville, AR, USA
2Department of Geography, Environment, and Society, University of Minnesota, Minneapolis, MN, USA
3Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA, USA
4College of Forest Resources and Environmental Science, Michigan Technological University. Houghton, MI, USA
5Texas A&M Transportation Institute, Texas A&M University, College Station, TX, USA
6Department of Geography, Texas A&M University, College Station, TX, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/CVPR.2015.7298594

simonyan, 2014, Very deep convolutional networks for large-scale image recognition

10.5334/dsj-2018-020

0, GHS-POP R2015A - Datasets - EU data portal - Europa Eu

10.1080/23754931.2015.1014272

doupe, 2016, Equitable development through deep learning:The case of sub-national population density estimation, Proc 7th Annu Symp Comput Develop, 1

10.1145/3065386

10.1155/2018/7068349

10.3390/su12103976

10.1007/s10708-007-9105-9

10.1080/01431161.2012.717183

10.1109/TGRS.2009.2031910

10.1109/JSTARS.2020.3023730

10.1145/3306618.3314263

10.1145/3149858.3149863

10.2105/AJPH.2007.114777

10.1111/j.1365-3156.2005.01487.x

10.1371/journal.pone.0107042

10.1111/j.1749-8198.2009.00220.x

10.1016/S0065-308X(05)62004-0

10.1109/LGRS.2015.2475299

10.1109/MGRS.2017.2762307

lecun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539

10.1117/1.JRS.11.042609

10.1038/s41467-019-09282-y

0, LandScan USA, Arcgis com

10.1145/3356991.3365469

10.1080/01431161.2010.496799

10.1029/JC090iC05p08995

10.1016/0022-1694(70)90098-3

0, Log hyperbolic cosine loss improves variational auto-encoder

10.1016/j.rse.2006.01.003

10.1016/j.rse.2004.02.013

10.1016/j.rse.2011.11.026

10.3390/su11072106

10.1016/0305-9006(96)00002-5

10.1109/CVPR.2016.308

10.1177/0956247809342182

10.1080/20964471.2020.1776200

10.1068/a231025

10.1080/01431161.2010.496801

10.1073/pnas.1715305115

10.5194/nhess-19-2141-2019

10.1559/152304001782173727

10.1080/17445647.2013.764830

10.1016/j.compenvurbsys.2007.06.001

10.1016/j.rse.2004.06.014

10.1080/10630732.2012.715479

10.1559/152304007781002190

10.1145/2487575.2488189

10.1016/j.ijdrr.2015.07.015

10.1371/journal.pntd.0001859

10.1371/journal.pone.0031743

yosinski, 0, How transferable are features in deep neural networks?, Proc 27th Int Conf Neural Inf Process Syst, 2, 3320

10.1007/978-3-540-88690-7_6

dobson, 2000, LandScan:A global population database for estimating populations at risk, Photogramm Eng Remote Sens, 69, 849

0, Oak ridge national laboratory

chollet, 2017, Xception:Deep learning with depthwise separable convolutions, Proc IEEE Conf Comput Vis Pattern Recognit, 1251

szegedy, 2017, Inception-v4, Inception-resnet and the impact of residual connections on learning, Proc AAAI Conf Artifi Intell, 31

10.1109/CVPR.2017.243

10.1109/CVPR.2016.90