Semiparametric Bayes Local Additive Models for Longitudinal Data
Tóm tắt
In longitudinal data analysis, a great interest is in assessing the impact of predictors on the time-varying trajectory in a response variable. In such settings, an important issue is to account for heterogeneity in the shape of the trajectory among subjects, while allowing the impact of the predictors to vary across subjects. We propose a flexible semiparametric Bayesian approach for addressing this issue relying on a local partition process prior, which allows flexible local borrowing of information across subjects. Local hypothesis testing and credible bands are developed for the identification of time windows across which a predictor has a significant impact, while adjusting for multiple comparisons. Posterior computation proceeds via an efficient MCMC algorithm using the exact block Gibbs sampler. The methods are assessed using simulation studies and applied to a yeast cell-cycle gene expression data set.
Tài liệu tham khảo
Behseta S, Kass RE, Wallstrom GL (2005) Hierarchical models for assessing variability among functions. Biometrika 92:419–434
Botts CH, Daniels MJ (2008) A flexible approach to Bayesian multiple curve fitting. Comput Stat Data Anal 52:5100–5120
Bush CA, MacEachern SN (1996) A semiparametric Bayesian model for randomised block designs. Biometrika 83:275–285
Chen G, Jensen S, Stoeckert C (2007) Clustering of genes into regulons using integrated modeling (CORIM). Genome Biol 8(1):R4
Crainiceanu CM, Ruppert D, Carroll RJ, Joshi A, Goodner B (2007) Spatially adaptive Bayesian penalized splines with heteroscedastic errors. J Comput Graph Stat 16:265–288
Cruz-Mesía RDL, Fernando AQ, Müeller P (2007) Semiparametric Bayesian classification with longitudinal markers. J R Stat Soc C 56:119–137
De Iorio M, Müller P, Rosner GL, MacEachern SN (2004) An ANOVA model for dependent random measures. J Am Stat Assoc 99:205–215
Dunson DB (2009) Nonparametric Bayes local partition models for random effects. Biometrika 96:249–262
Escobar MD, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90:577–588
Fan J, Zhang W (2008) Statistical methods with varying coefficient models. Stat Interface 1:179–195
Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230
Ferguson TS (1974) Prior distributions on spaces of probability measures. Ann Stat 2:615–629
Hastie TJ, Tibshirani RJ (1993) Varying-coefficient models. J R Stat Soc B 55:757–796
Hoover DR, Rice JA, Wu CO, Yang L-P (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822
Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximation for the analysis of repeated measurements. Biometrika 89:111–128
Kleinman KP, Ibrahim JG (1998) A semiparametric Bayesian approach to the random effects model. Biometrics 54:921–938
Lee D, Shaddick G (2007) Time-varying coefficient models for the analysis of air pollution and health outcome data. Biometrics 63:1253–1261
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al. (2002) Transcriptional regulatory networks in S. cerevisiae. Science 298:799–804
Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data (with discussions). J Am Stat Assoc 96:103–126
Lo AY (1984) On a class of Bayesian nonparametric estimates. 1. Density estimates. Ann Stat 12:351–357
Luan YH, Li HZ (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19:474–482
Morris JS, Carroll RJ (2006) Wavelet-based functional mixed models. J R Stat Soc B 68:179–199
Müller P, Rosner GL (1997) A Bayesian population model with hierarchical mixture priors applied to blood count data. J Am Stat Assoc 92:1279–1292
Müller P, Parmigiani G, Robert C, Rousseau J (2004) Optimal sample size for multiple testing: the case of gene expression microarrays. J Am Stat Assoc 99:990–1001
Nasmyth K (1985) At least 1400 base pairs of 59-flanking DNA is required for the correct expression of the HO gene in yeast. Cell 42:213–223
Ohlssen DI, Sharples LD, Spiegelhalter DJ (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Stat Med 26:2088–2112
Papaspiliopoulos O (2008) A note on posterior sampling from Dirichlet mixture models. Technical report, Universitat Pompeu Fabra
Papaspiliopoulos O, Roberts G (2008) Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95:169–186
Petrone S, Guindani M, Gelfand AE (2009) Hybrid Dirichlet mixture models for functional data. J R Stat Soc B 71:755–782
Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakola TS et al. (2001) Serial regulation of transcriptional regulators in the Yeast cell cycle. Cell 106:697–708
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297
Thompson WK, Rosen O (2008) A Bayesian model for sparse functional data. Biometrics 64:54–63
Walker SG (2007) Sampling the Dirichlet mixture model with slices. Commun Stat, Simul Comput 36:45–54
Wang LM, Dunson DB (2010) Semiparametric Bayes multiple testing: applications to tumor data. Biometrics 66:493–501
Wang L, Chen G, Li H (2007) Group scad regression analysis for microarray time course gene expression data. Bioinformatics 23:1486–1494
Wang L, Li H, Huang JZ (2008) Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Am Stat Assoc 103:1556–1569
Wu HL, Zhang JT (2006) Nonparametric regression methods for longitudinal data analysis. Wiley, Hoboken