Semigroup actions on homogeneous spaces

Springer Science and Business Media LLC - Tập 50 Số 1 - Trang 59-88 - 1995
Luiz A. B. San Martín1,2, Pedro Aladar Tonelli1,2
1Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo
2Instituto de Matemática, Estatística e Ciência da Computação, Universidade Estadual de Campinas, Campinas, Brasil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, L., and W. Kliemann,Qualitative theory of stochastic systems, Probabilistic Analysis and Related Topics, vol. 3, A. T. Barucha-Reid, Ed., Academic Press, 1983, 1–79.

Arnold, L., W. Kliemann, and E. Oeljeklaus,Lyapunov exponents of linear stochastic systems, In: Lyapunov Exponents, L. Arnold, and V. Wihstutz, Eds., LNM (Springer)1186 (1986).

Chon, I., and J. D. Lawson,Problems on semigroups and control, Semigroup Forum41 (1990), 245–252.

Colonius, F., and W. Kliemann,Linear control semigroups acting on projective spaces, Journal of Dynamics and Differential Equations5 (1993), 495–528.

—,Some aspects of control systems as dynamical systems, Journal of Dynamics and Differential Equations5 (1993), 469–494.

Colonius, F.,Lyapounov Exponents of Control Flows, In: Lyapounov Exponents, L. Arnold, C. Eckemann, and H. Crauel, Eds., LNM (Springer)1486 (1991).

Duistermaat, J. J., J. A. C. Kolk, and V. S. Varadarajan,Functions, flows and oscillatory integrals on, flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Mathematica49 (1983), 309–398.

Guivarc'h, Y., and A. Raugi,Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheorie Verw. Geb.69 (1985), 184–242.

Helgason, S., “Differential Geometry, Lie Groups and Symmetric Spaces,”, Academic Press, 1978.

Hilgert, J., K. H. Hofmann, and J. D. Lawson, “Lie Groups, Convex Cones and Semigroups”, Oxford University Press, 1989.

Hofmann, K. H., J. D. Lawson, and J. S. Pym, “The Analytical and Topological Theory of Semigroups”, De Gruyter, Expositions in Mathematics1 (1990).

Jurdjevic, V. and I. Kupka,Controllability of right invariant systems on semi-simple Lie groups and their homogenous spaces, Ann. Institut Fourier (Grenoble)31 (1981), 151–179.

Lawson, J. D.,Maximal subsemigroups of Lie groups that are total, Proc. Edinburgh Math. Soc.30 (1987), 479–501.

Neeb, K-H.,Conal orders on homogeneous spaces, Inventiones Math.104 (1991), 467–496.

Ruppert, W. A. F.,On open subsemigroups of connected groups, Semigroup Forum39 (1989), 347–362.

San Martin, L. and L. Arnold,A control problem related to the Lyapunov spectrum of stochastic flows, Mat. Aplicade e Computacional5 (1986), 31–64.

San Martin, L.,Invariant control sets on flag manifolds, Math. of Control, Signals and Systems6 (1993), (1992), 41–61.

—,Nonreversibility of subsemigroups of semi-simple Lie groups, Semigroup Forum44 (1992), 376–387.

San Martin, L.,Two results on maximal subsemigroups of Lie groups, Technical Report, University of Campinas 1992.

Stefan, P.,Accessible sets, orbits and foliations with singularities, Proc. London Math. Soc.29 (1974), 699–713.

Tonelli, P. A.,Control sets on homogeneous spaces, Thesis, University of Bremen, 1991.

Varadarajan, V. S.,Harmonic analysis on real reductive groups, LNM (Springer)576 (1977).

Vinberg, E. B.,Invariant convex cones and orderings in Lie groups, Funct. Anal. and Appl.14, pp. 1–13 (1980).

Warner, G., “Harmonic Analysis on Semi-simple Lie Groups”, Springer-Verlag, 1972.