Semiflows on Topological Spaces: Chain Transitivity and Semigroups

Mauro Patrão1, Luiz A. B. San Martín1
1Instituto de Matemática, Universidade Estadual de Campinas, Cx. Postal 6065, 13.081-970 Campinas-SP, Brasil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Braga-Barros C.J., San Martin L.A.B. (1996). Chain control sets for semi-group actions. Math. Apl. Comput. 15, 257–276

Braga Barros, C. J., and San Martin, L. A. B. (2006). Chain transitive sets for flows on flag bundles. Forum Math. to appear.

Colonius F., Kliemann W. (2000). The Dynamics of Control. Birkhäuser, Boston

Conley C. (1978). Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math. Vol. 38. American Mathematical Society Providence, MI

Conley C. (1998). The gradient structure flow: I. Ergod. Theor. Dyn. Syst. 8, 11–26

Hirsch M., Smith H., Zhao X. (2001). Chain transitivity, attractivity and strong repellors for semidynamical systems. J. Dyn. Diff. Eq. 13: 107–131

Hurley M. (1995). Chain recurrence, semiflows, and gradients. J. Dyn. Diff. Eq. 7, 437–456

Kelley, J. (1955). General Topology. D. Van Nostrand Company Inc., NJ.

Michael E. (1951). Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71, 151–182

Moeckel R. (1988). Morse decomposition and connection matrices. Ergod. Theor Dyn. Syst. 8, 227–249

Patrão, M. Morse decomposition of semiflows on topological spaces. J. Dyn. Diff. Eq.

Patrão, M., and San Martin, L. A. B. Chain recurrence of flows and semiflows on fiber bundles. Preprint.

Rybakowski, K. P. (1987). The Homotopy Index and Partial Differential Equations. Universitext, Springer-Verlag.