Osterloh, 2011, MRS Bull., 36, 17, 10.1557/mrs.2010.5
Habisreutinger, 2013, Angew. Chem., Int. Ed., 52, 7372, 10.1002/anie.201207199
Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103
Lewis, 2007, Science, 315, 798, 10.1126/science.1137014
B. Norton , Harnessing Solar Heat, Springer, 2013
Grätzel, 2001, Nature, 414, 338, 10.1038/35104607
Grätzel, 2003, J. Photochem. Photobiol., C, 4, 145, 10.1016/S1389-5567(03)00026-1
Chen, 2012, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c
Chen, 2012, Chem. Mater., 24, 3659, 10.1021/cm302533s
Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326
Hisatomi, 2014, Chem. Soc. Rev., 10.1039/C3CS60378D
Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G
Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J
Scheneider, 2012, Chem. Soc. Rev., 41, 2036, 10.1039/C1CS15278E
Huang, 2013, Chem. Soc. Rev., 42, 173, 10.1039/C2CS35288E
Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0
Inoue, 1979, Nature, 277, 637, 10.1038/277637a0
Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425
Licht, 2001, Int. J. Hydrogen Energy, 26, 653, 10.1016/S0360-3199(00)00133-6
Bolton, 1985, Nature, 316, 495, 10.1038/316495a0
Hoffman, 1995, Chem. Rev., 95, 69, 10.1021/cr00033a004
Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013
Mills, 1997, J. Photochem. Photobiol., A, 108, 1, 10.1016/S1010-6030(97)00118-4
Fujishima, 2008, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001
Leary, 2011, Carbon, 49, 741, 10.1016/j.carbon.2010.10.010
Impedance spectroscopy: Theory, experimental, and Applications, ed. E. Barsoukov and J. R. Macdonald, John Wiley, New Jersey, 2nd edn, 2005
Fan, 2013, Phys. Chem. Chem. Phys., 15, 2632, 10.1039/c2cp43524a
Serpone, 1995, J. Phys. Chem., 99, 16646, 10.1021/j100045a026
Serpone, 1996, J. Photochem. Photobiol., A, 94, 191, 10.1016/1010-6030(95)04223-7
Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, ed. Z. Chen, H. Dinh and E. Miller, Springer, New York, 2013
Tafalla, 1990, J. Electrochem. Soc., 137, 1810, 10.1149/1.2086809
Li, 2014, J. Am. Chem. Soc., 136, 8438, 10.1021/ja503508g
Youngblood, 2009, Acc. Chem. Res., 42, 1966, 10.1021/ar9002398
Swierk, 2013, Chem. Soc. Rev., 42, 2357, 10.1039/C2CS35246J
Xu, 2000, Am. Mineral., 85, 543, 10.2138/am-2000-0416
Halary-Wagner, 2004, J. Electrochem. Soc., 151, C571, 10.1149/1.1775931
Takahashi, 2001, Thin Solid Films, 388, 231, 10.1016/S0040-6090(01)00811-2
Salvador, 1984, Appl. Phys., 55, 2977, 10.1063/1.333358
Balberg, 1978, J. Magn. Magn. Mater., 7, 12, 10.1016/0304-8853(78)90138-5
Young, 2013, Catal. Sci. Technol., 3, 1660, 10.1039/c3cy00310h
Murphy, 2006, Int. J. Hydrogen Energy, 31, 1999, 10.1016/j.ijhydene.2006.01.014
Katz, 2012, Coord. Chem. Rev., 256, 2521, 10.1016/j.ccr.2012.06.017
Sivula, 2011, ChemSusChem, 4, 432, 10.1002/cssc.201000416
Hamann, 2012, Dalton Trans., 41, 7830, 10.1039/c2dt30340j
Tilley, 2010, Angew. Chem., Int. Ed., 49, 6405, 10.1002/anie.201003110
Li, 2012, Chem. Commun., 48, 8213, 10.1039/c2cc30376k
Kim, 2013, Sci. Rep., 3, 2681, 10.1038/srep02681
Zhang, 2014, Energy Environ. Sci., 7, 1402, 10.1039/C3EE44031A
Park, 2013, Chem. Soc. Rev., 42, 2321, 10.1039/C2CS35260E
Walsh, 2009, Chem. Mater., 21, 547, 10.1021/cm802894z
Hong, 2011, Energy Environ. Sci., 4, 1781, 10.1039/c0ee00743a
Seabold, 2014, Phys. Chem. Chem. Phys., 16, 1121, 10.1039/C3CP54356K
Li, 2013, Energy Environ. Sci., 6, 347, 10.1039/C2EE22618A
Zhong, 2011, J. Am. Chem. Soc., 133, 18370, 10.1021/ja207348x
Abdi, 2012, J. Phys. Chem. C, 116, 9398, 10.1021/jp3007552
Luo, 2011, Energy Environ. Sci., 4, 4046, 10.1039/c1ee01812d
Pilli, 2011, Energy Environ. Sci., 4, 5028, 10.1039/c1ee02444b
Kim, 2014, Science, 343, 990, 10.1126/science.1246913
Bhandari, 2013, Sol. Energy Mater. Sol. Cells, 117, 476, 10.1016/j.solmat.2013.07.018
Mark, 1965, Phys. Rev. [Sect.] A, 137, 203, 10.1103/PhysRev.137.A203
Ebothe, 1986, J. Appl. Phys., 59, 2076, 10.1063/1.336394
Novikov, 1971, Phys. Status Solidi B, 48, 473, 10.1002/pssb.2220480204
Weber, 1988, Z. Phys. B: Condens. Matter, 72, 379, 10.1007/BF01312825
Solar Hydrogen Generation: Toward a Renewable Energy Future, ed. K. Rajeshwar, R. McConnell and S. Licht, Springer, 2008
Bao, 2008, Chem. Mater., 20, 110, 10.1021/cm7029344
Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s
Silva, 2008, J. Phys. Chem. C, 112, 12069, 10.1021/jp8037279
Li, 2009, J. Phys. Chem. C, 113, 9352, 10.1021/jp901505j
Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e
Shalom, 2011, J. Phys. Chem. Lett., 2, 1998, 10.1021/jz200863j
Wang, 2014, J. Am. Chem. Soc., 136, 7708, 10.1021/ja5023893
del Alamo, 2011, Nature, 479, 317, 10.1038/nature10677
Allali, 1978, Appl. Phys. Lett., 33, 659, 10.1063/1.90455
On Solar Hydrogen and Nanotechnology, ed. L. Vayssieres, John Wiley & Sons (Asian), 2009
Lee, 2012, Angew. Chem., Int. Ed., 51, 10760, 10.1002/anie.201203174
Ang, 1984, J. Electrochem. Soc., 131, 1462, 10.1149/1.2115874
Khaselev, 2001, Int. J. Hydrogen Energy, 26, 127, 10.1016/S0360-3199(00)00039-2
Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425
Practical Handbook of Photovoltaics: Fundamentals and Applications, ed. V. M. Andreev, Elsevier, 2003
Chen, 2007, Chem. Rev., 107, 2891, 10.1021/cr0500535
Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D
Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Kongkanand, 2008, J. Am. Chem. Soc., 130, 4007, 10.1021/ja0782706
Prabakar, 2010, J. Phys. D: Appl. Phys., 43, 012002, 10.1088/0022-3727/43/1/012002
Kasowski, 1973, Phys. Rev. Lett., 30, 1175, 10.1103/PhysRevLett.30.1175
Singh, 2012, Eur. Phys. J. B, 85, 392, 10.1140/epjb/e2012-30449-7
The Physics of Semiconductors: An Introduction Including Devices and Nanophysics, ed. M. Grundmann, Springer, Berlin, 2006
Balberg, 1978, J. Magn. Magn. Mater., 7, 12, 10.1016/0304-8853(78)90138-5
Kay, 2006, J. Am. Chem. Soc., 128, 15714, 10.1021/ja064380l
Grela, 1996, J. Phys. Chem., 100, 18214, 10.1021/jp961936q
Formal, 2011, Chem. Sci., 2, 737, 10.1039/C0SC00578A
Formal, 2010, Adv. Funct. Mater., 20, 1099, 10.1002/adfm.200902060
Tanriseven, 2011, J. Appl. Phys., 110, 034508, 10.1063/1.3611387
Gonfa, 2014, Sol. Energy Mater. Sol. Cells, 124, 67, 10.1016/j.solmat.2014.01.037
O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0
Kopidakis, 2000, J. Phys. Chem. B, 104, 3930, 10.1021/jp9936603
Low, 2014, Chem. Commun., 50, 10768, 10.1039/C4CC02553A
Ida, 2014, J. Phys. Chem. Lett., 5, 2533, 10.1021/jz5010957
Nanomaterials, Nanostructures, and Nanotechnologies, ed. A. I. Gusev, Fizmatlit, Moscow, 2007
Zhou, 2013, Angew. Chem., Int. Ed., 52, 8579, 10.1002/anie.201302680
Enache-Pommer, 2009, Phys. Chem. Chem. Phys., 11, 9648, 10.1039/b915345d
Li, 2012, J. Mater. Chem., 22, 20472, 10.1039/c2jm33404f
Li, 2013, J. Mater. Chem. A, 1, 225, 10.1039/C2TA00283C
Chen, 2011, ACS Nano, 5, 4310, 10.1021/nn200100v
Wu, 2010, J. Am. Chem. Soc., 132, 6679, 10.1021/ja909456f
Murakami, 2009, J. Phys. Chem. C, 113, 3062, 10.1021/jp809104t
Mor, 2005, Nano Lett., 5, 191, 10.1021/nl048301k
D. DeMeo , S.MacNaughton, S.Sonkusale and T. E.Vandervelde, Electrodeposited copper oxide and zinc oxide core–shell nanowire photovoltaic cells, in Nanowires—Implementations and Applications, ed. A. Hashim, InTech, 2011
Muskens, 2008, Nano Lett., 8, 2638, 10.1021/nl0808076
Garnett, 2010, Nano Lett., 10, 1082, 10.1021/nl100161z
Cao, 2010, Nano Lett., 10, 439, 10.1021/nl9036627
Kayes, 2005, J. Appl. Phys., 97, 11, 10.1063/1.1901835
Mor, 2007, Nano Lett., 7, 2356, 10.1021/nl0710046
Lin, 2011, J. Am. Chem. Soc., 133, 2398, 10.1021/ja110741z
García-Calzón, 2012, TrAC, Trends Anal. Chem., 35, 27, 10.1016/j.trac.2012.01.003
Baba, 2008, Nat. Photonics, 2, 465, 10.1038/nphoton.2008.146
Lin, 2003, J. Opt. Soc. Am. B, 20, 1538, 10.1364/JOSAB.20.001538
Tao, 2007, Nat. Nanotechnol., 2, 435, 10.1038/nnano.2007.189
Cheng, 2012, Small, 8, 37, 10.1002/smll.201101660
Zhang, 2013, Nano Lett., 13, 14, 10.1021/nl3029202
Semiconductor Nanostructures, ed. D. Bimberg, Springer, 2008
Li, 2007, Chem. Phys., 339, 173, 10.1016/j.chemphys.2007.05.023
Colbeau-Justin, 2003, J. Mater. Sci., 38, 2429, 10.1023/A:1023905102094
Sumita, 2002, Appl. Surf. Sci., 200, 21, 10.1016/S0169-4332(02)00614-1
Shiga, 1998, Bull. Chem. Soc. Jpn., 71, 2119, 10.1246/bcsj.71.2119
Shen, 2006, Chem. Phys. Lett., 419, 464, 10.1016/j.cplett.2005.11.109
Scanlon, 2013, Nat. Mater., 12, 798, 10.1038/nmat3697
Sun, 2003, Catal. Today, 88, 49, 10.1016/j.cattod.2003.08.006
Baiju, 2009, Catal. Lett., 130, 130, 10.1007/s10562-008-9798-5
Zhang, 2008, Angew. Chem., Int. Ed., 47, 1766, 10.1002/anie.200704788
Joshi, 1990, IEEE Trans. Electron Devices, 37, 237, 10.1109/16.43821
Doshchanov, 1996, Semiconductors, 30, 305
Kelly, 1998, Electrochim. Acta, 43, 2773, 10.1016/S0013-4686(98)00018-8
Lai, 2013, J. Mater. Chem. A, 1, 4182, 10.1039/c3ta00188a
Wu, 2012, J. Phys. Chem. C, 116, 26800, 10.1021/jp3087495
Yang, 2008, Nature, 453, 638, 10.1038/nature06964
Zheng, 2013, J. Mater. Chem. A, 1, 12635, 10.1039/c3ta12946b
Jiao, 2013, Chem. Commun., 49, 636, 10.1039/C2CC37324F
Lu, 2011, Phys. Chem. Chem. Phys., 13, 18063, 10.1039/c1cp22726b
Hotsenpiller, 1998, J. Phys. Chem. B, 102, 3216, 10.1021/jp980104k
Ohno, 2002, New J. Chem., 26, 1167, 10.1039/b202140d
Liu, 2010, Nanoscale, 2, 1115, 10.1039/c0nr00050g
Photoelectrochemical Hydrogen Production, ed. R. van de Krol and M. Graetzel, Springer, New York, 2012
Bak, 2002, Int. J. Hydrogen Energy, 27, 991, 10.1016/S0360-3199(02)00022-8
Electrochemistry of semiconductor and oxidized metal electrodes, ed. S. R. Morrison, Plenum, New York, 1980
J. R. Bolton , A. F.Haught and R. T.Ross, Photochemical energy storage: an analysis of limits, in Photochemical Conversion and Storage of Solar Energy, ed. J. S. Connolly, Academic Press, New York, 1981
Weber, 1986, Int. J. Hydrogen Energy, 11, 225, 10.1016/0360-3199(86)90183-7
Asashi, 2001, Science, 293, 269, 10.1126/science.1061051
Borgarello, 1982, J. Am. Chem. Soc., 104, 2996, 10.1021/ja00375a010
Henderson, 2003, J. Am. Chem. Soc., 125, 14974, 10.1021/ja037764+
Anpo, 2003, J. Catal., 216, 505, 10.1016/S0021-9517(02)00104-5
Hahn, 2013, Catal. Sci. Technol., 3, 1765, 10.1039/c3cy00021d
Sato, 1986, Chem. Phys. Lett., 123, 126, 10.1016/0009-2614(86)87026-9
Sakthivel, 2003, Angew. Chem., Int. Ed., 42, 4908, 10.1002/anie.200351577
Irie, 2003, J. Phys. Chem. B, 107, 5483, 10.1021/jp030133h
Lee, 2005, Appl. Phys. Lett., 87, 011904, 10.1063/1.1991982
Batzil, 2006, Phys. Rev. Lett., 96, 026103, 10.1103/PhysRevLett.96.026103
Wang, 2009, J. Am. Chem. Soc., 131, 12290, 10.1021/ja903781h
Tafen, 2009, Appl. Phys. Lett., 94, 093101, 10.1063/1.3093820
Miyagi, 2004, Jpn. J. Appl. Phys., 43, 775, 10.1143/JJAP.43.775
Maruska, 1979, Sol. Energy Mater., 1, 237, 10.1016/0165-1633(79)90042-X
Salvador, 1982, Sol. Energy Mater., 6, 241, 10.1016/0165-1633(82)90024-7
Meng, 2011, Appl. Phys. Lett., 98, 112104, 10.1063/1.3567766
Choi, 1994, J. Phys. Chem., 98, 13669, 10.1021/j100102a038
Chen, 2011, Science, 331, 746, 10.1126/science.1200448
Hu, 2012, Angew. Chem., Int. Ed., 51, 12410, 10.1002/anie.201206375
Wang, 2011, Nano Lett., 11, 3026, 10.1021/nl201766h
Yang, 2013, J. Am. Chem. Soc., 135, 17831, 10.1021/ja4076748
Wang, 2013, Energy Environ. Sci., 6, 3007, 10.1039/c3ee41817k
Lin, 2014, Energy Environ. Sci., 7, 967, 10.1039/c3ee42708k
Xia, 2013, J. Mater. Chem. A, 1, 2983, 10.1039/c3ta01589k
Cui, 2014, J. Mater. Chem. A, 2, 8612, 10.1039/C4TA00176A
Liu, 2014, Nano Lett., 14, 3309, 10.1021/nl500710j
Li, 2013, Phys. Chem. Chem. Phys., 15, 16220, 10.1039/c3cp51902c
Meng, 2012, Nano Res., 5, 213, 10.1007/s12274-012-0201-x
Meng, 2013, Catal. Today, 199, 48, 10.1016/j.cattod.2012.05.038
Wei, 1988, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 8958, 10.1103/PhysRevB.37.8958
Maeda, 2005, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777
Lee, 2007, J. Phys. Chem. C, 111, 1042, 10.1021/jp0656532
Kitano, 2010, J. Mater. Chem., 20, 627, 10.1039/B910180B
Ouyang, 2011, J. Am. Chem. Soc., 133, 7757, 10.1021/ja110691t
Wang, 2009, J. Phys. Chem. C, 113, 3785, 10.1021/jp807393a
Yao, 2006, J. Phys. Chem. B, 110, 11188, 10.1021/jp0608729
Linic, 2011, Nat. Mater., 10, 911, 10.1038/nmat3151
Cushing, 2013, Interface, 2, 63
Atwater, 2010, Nat. Mater., 9, 205, 10.1038/nmat2629
Clavero, 2014, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238
Warren, 2012, Energy Environ. Sci., 5, 5133, 10.1039/C1EE02875H
Li, 2013, Nat. Commun., 4, 2651, 10.1038/ncomms3651
Tian, 2004, Chem. Commun., 1810, 10.1039/b405061d
Tian, 2005, J. Am. Chem. Soc., 127, 7632, 10.1021/ja042192u
Cushing, 2012, J. Am. Chem. Soc., 134, 15033, 10.1021/ja305603t
Mertz, 2000, J. Opt. Soc. Am. B, 17, 1906, 10.1364/JOSAB.17.001906
Surface Plasmon on Smooth and Rough Surfaces and on Gratings, ed. H. Raether, Springer, 1988
Gao, 2012, ACS Nano, 6, 234, 10.1021/nn203457a
Dotan, 2013, Nat. Mater., 12, 158, 10.1038/nmat3477
Knight, 2011, Science, 332, 702, 10.1126/science.1203056
Wang, 2011, Nano Lett., 11, 5426, 10.1021/nl203196z
Nishijima, 2012, J. Phys. Chem. Lett., 3, 1248, 10.1021/jz3003316
Knight, 2013, Nano Lett., 13, 1687, 10.1021/nl400196z
Mubeen, 2013, Nat. Nanotechnol., 8, 247, 10.1038/nnano.2013.18
Mubeen, 2011, Nano Lett., 11, 5548, 10.1021/nl203457v
Li, 2013, ACS Catal., 3, 47, 10.1021/cs300672f
Wu, 2013, Nano Lett., 13, 5255, 10.1021/nl402730m
White, 2012, Appl. Phys. Lett., 101, 073905, 10.1063/1.4746425
Govorova, 2014, Nano Today, 9, 85, 10.1016/j.nantod.2014.02.006
Pu, 2013, Nano Lett., 13, 3817, 10.1021/nl4018385
Kimura, 2012, J. Phys. Chem. C, 116, 7111, 10.1021/jp301681n
Furube, 2007, J. Am. Chem. Soc., 129, 14852, 10.1021/ja076134v
Inouye, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 57, 11334, 10.1103/PhysRevB.57.11334
Kumar, 2011, ACS Catal., 1, 300, 10.1021/cs100117v
Thomann, 2011, Nano Lett., 11, 3440, 10.1021/nl201908s
Awazu, 2008, J. Am. Chem. Soc., 130, 1676, 10.1021/ja076503n
Torimoto, 2011, J. Phys. Chem. Lett., 2, 2057, 10.1021/jz2009049
Zhou, 2013, J. Mater. Chem. A, 1, 13128, 10.1039/c3ta12540h
Xu, 2013, Nanoscale Res. Lett., 8, 73, 10.1186/1556-276X-8-73
Aydin, 2011, Nat. Commun., 2, 517, 10.1038/ncomms1528
Yana, 2009, J. Alloys Compd., 472, 429, 10.1016/j.jallcom.2008.04.078
Zhang, 2010, ACS Nano, 4, 387, 10.1021/nn901087c
D'Amico, 2012, Appl. Phys. Lett., 101, 141606, 10.1063/1.4757281
Jang, 2012, Catal. Today, 185, 270, 10.1016/j.cattod.2011.07.008
Lin, 2012, J. Am. Chem. Soc., 134, 5508, 10.1021/ja300319g
Mayer, 2013, Acc. Chem. Res., 46, 1558, 10.1021/ar300302z
Meng, 2013, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s
Wang, 2013, Energy Environ. Sci., 6, 1211, 10.1039/c3ee24162a
Tsai, 2011, Nanoscale Res. Lett., 6, 575, 10.1186/1556-276X-6-575
Kim, 2005, Angew. Chem., 117, 4661, 10.1002/ange.200500064
Kim, 2009, Chem. Commun., 5889, 10.1039/b911805e
Serpone, 1984, J. Chem. Soc., Chem. Commun., 342, 10.1039/C39840000342
Yoshimura, 1988, Chem. Phys. Lett., 147, 401, 10.1016/0009-2614(88)80256-2
Gerischer, 1986, J. Electroanal. Chem., 204, 225, 10.1016/0022-0728(86)80520-4
Kohtani, 1993, Chem. Phys. Lett., 206, 166, 10.1016/0009-2614(93)85535-V
Wang, 2010, J. Phys. Chem. Lett., 1, 1030, 10.1021/jz100144w
Kim, 2011, J. Phys. Chem. C, 115, 9797, 10.1021/jp1122823
Navarro, 2008, Int. J. Hydrogen Energy, 33, 4265, 10.1016/j.ijhydene.2008.05.048
Qu, 2013, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E
Konstantatos, 2006, Nature, 442, 180, 10.1038/nature04855
Mcdonald, 2005, Nat. Mater., 4, 138, 10.1038/nmat1299
Dissanayake, 2008, Appl. Phys. Lett., 93, 043501, 10.1063/1.2964203
Linnros, 1998, J. Appl. Phys., 84, 275, 10.1063/1.368024
Linnros, 1998, J. Appl. Phys., 84, 284, 10.1063/1.368025
Landsberg, 1987, Appl. Phys. Lett., 50, 745, 10.1063/1.98086
Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017
Mayer, 2012, J. Am. Chem. Soc., 134, 12406, 10.1021/ja3051734
Hwang, 2009, Nano Lett., 9, 410, 10.1021/nl8032763
Yu, 2005, Appl. Catal., A, 289, 186, 10.1016/j.apcata.2005.04.057
Kongkanand, 2007, Nano Lett., 7, 676, 10.1021/nl0627238
Woan, 2009, Adv. Mater., 21, 2233, 10.1002/adma.200802738
Williams, 2008, ACS Nano, 2, 1487, 10.1021/nn800251f
Zhang, 2010, ACS Nano, 4, 380, 10.1021/nn901221k
Xiang, 2012, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J
Ng, 2010, J. Phys. Chem. Lett., 1, 2607, 10.1021/jz100978u
Zhang, 2010, J. Mater. Chem., 20, 2801, 10.1039/b917240h
Stankovich, 2006, Nature, 442, 282, 10.1038/nature04969
Meng, 2013, ACS Catal., 3, 746, 10.1021/cs300740e
Sun, 2013, ACS Appl. Mater. Interfaces, 5, 13035, 10.1021/am403937y
Hou, 2012, Nano Lett., 12, 6464, 10.1021/nl303961c
Brillet, 2012, Nat. Photonics, 6, 824, 10.1038/nphoton.2012.265
Reece, 2011, Science, 334, 645, 10.1126/science.1209816
Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175
Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966
Maeda, 2013, ACS Catal., 3, 1486, 10.1021/cs4002089
Kudo, 2011, MRS Bull., 36, 32, 10.1557/mrs.2010.3
Kato, 2004, Chem. Lett., 33, 1348, 10.1246/cl.2004.1348
Higashi, 2008, Chem. Phys. Lett., 452, 120, 10.1016/j.cplett.2007.12.021
Higashi, 2009, Chem. Mater., 21, 1543, 10.1021/cm803145n
Maeda, 2011, J. Phys. Chem. C, 115, 3057, 10.1021/jp110025x
Abe, 2011, ChemSusChem, 4, 228, 10.1002/cssc.201190005
Higashi, 2008, Chem. Lett., 37, 138, 10.1246/cl.2008.138
Sasaki, 2013, J. Am. Chem. Soc., 135, 5441, 10.1021/ja400238r
Sasaki, 2009, J. Phys. Chem. C, 113, 17536, 10.1021/jp907128k
Ma, 2013, Chem. – Eur. J., 19, 7480, 10.1002/chem.201300579
Abe, 2001, Chem. Phys. Lett., 344, 339, 10.1016/S0009-2614(01)00790-4
Maeda, 2013, ACS Catal., 4, 1013
Iwase, 2011, J. Am. Chem. Soc., 133, 11054, 10.1021/ja203296z
Tada, 2006, Nat. Mater., 5, 782, 10.1038/nmat1734
Yun, 2011, ACS Nano, 5, 4084, 10.1021/nn2006738
Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e
Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397
Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C
Trasatti, 1984, Electrochim. Acta, 29, 1503, 10.1016/0013-4686(84)85004-5
Fabbri, 2014, Catal. Sci. Technol., 10.1039/C4CY00669K
Riha, 2013, ACS Nano, 7, 2396, 10.1021/nn305639z
Xi, 2012, J. Phys. Chem. C, 116, 13884, 10.1021/jp304285r
Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018
Zhong, 2011, J. Am. Chem. Soc., 133, 18370, 10.1021/ja207348x
Klahr, 2012, J. Am. Chem. Soc., 134, 16693, 10.1021/ja306427f
Steinmiller, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 20633, 10.1073/pnas.0910203106
Bledowski, 2012, ChemPhysChem, 13, 3018, 10.1002/cphc.201200071
Liu, 2014, J. Solid State Electrochem., 18, 157, 10.1007/s10008-013-2228-7
Chemelewski, 2014, J. Am. Chem. Soc., 136, 2843, 10.1021/ja411835a
Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c
Trasatti, 1972, J. Electroanal. Chem., 39, 163, 10.1016/S0022-0728(72)80485-6
Kamat, 2012, J. Phys. Chem. Lett., 3, 663, 10.1021/jz201629p
Maeda, 2006, Angew. Chem., Int. Ed., 45, 7970, 10.1002/ange.200602473
Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Lee, 2002, J. Mater. Chem., 12, 614, 10.1039/b108062h
Jaramillo, 2007, Science, 317, 1284, 10.1126/science.1141483
Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008
Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e
Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690
Hou, 2013, Adv. Mater., 25, 6291, 10.1002/adma.201303116
Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x
Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700
Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h