Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review

Catalysis Science and Technology - Tập 5 Số 3 - Trang 1360-1384
Jiangtian Li1,2,3, Nianqiang Wu1,2,3
1Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
2Morgantown
3WEST VIRGINIA UNIVERSITY

Tóm tắt

This perspective article describes the barrier, progress and future direction of research on the photocatalytic and photoelectrochemical solar fuel generation.

Từ khóa


Tài liệu tham khảo

Osterloh, 2011, MRS Bull., 36, 17, 10.1557/mrs.2010.5

Habisreutinger, 2013, Angew. Chem., Int. Ed., 52, 7372, 10.1002/anie.201207199

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Lewis, 2007, Science, 315, 798, 10.1126/science.1137014

B. Norton , Harnessing Solar Heat, Springer, 2013

Grätzel, 2001, Nature, 414, 338, 10.1038/35104607

Grätzel, 2003, J. Photochem. Photobiol., C, 4, 145, 10.1016/S1389-5567(03)00026-1

Chen, 2012, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c

Chen, 2012, Chem. Mater., 24, 3659, 10.1021/cm302533s

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Hisatomi, 2014, Chem. Soc. Rev., 10.1039/C3CS60378D

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J

Scheneider, 2012, Chem. Soc. Rev., 41, 2036, 10.1039/C1CS15278E

Huang, 2013, Chem. Soc. Rev., 42, 173, 10.1039/C2CS35288E

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Inoue, 1979, Nature, 277, 637, 10.1038/277637a0

Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425

Licht, 2001, Int. J. Hydrogen Energy, 26, 653, 10.1016/S0360-3199(00)00133-6

Bolton, 1985, Nature, 316, 495, 10.1038/316495a0

Hoffman, 1995, Chem. Rev., 95, 69, 10.1021/cr00033a004

Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

Mills, 1997, J. Photochem. Photobiol., A, 108, 1, 10.1016/S1010-6030(97)00118-4

Fujishima, 2008, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Leary, 2011, Carbon, 49, 741, 10.1016/j.carbon.2010.10.010

Impedance spectroscopy: Theory, experimental, and Applications, ed. E. Barsoukov and J. R. Macdonald, John Wiley, New Jersey, 2nd edn, 2005

Fan, 2013, Phys. Chem. Chem. Phys., 15, 2632, 10.1039/c2cp43524a

Serpone, 1995, J. Phys. Chem., 99, 16646, 10.1021/j100045a026

Serpone, 1996, J. Photochem. Photobiol., A, 94, 191, 10.1016/1010-6030(95)04223-7

Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, ed. Z. Chen, H. Dinh and E. Miller, Springer, New York, 2013

Tafalla, 1990, J. Electrochem. Soc., 137, 1810, 10.1149/1.2086809

Li, 2014, J. Am. Chem. Soc., 136, 8438, 10.1021/ja503508g

Youngblood, 2009, Acc. Chem. Res., 42, 1966, 10.1021/ar9002398

Swierk, 2013, Chem. Soc. Rev., 42, 2357, 10.1039/C2CS35246J

Xu, 2000, Am. Mineral., 85, 543, 10.2138/am-2000-0416

Halary-Wagner, 2004, J. Electrochem. Soc., 151, C571, 10.1149/1.1775931

Takahashi, 2001, Thin Solid Films, 388, 231, 10.1016/S0040-6090(01)00811-2

Salvador, 1984, Appl. Phys., 55, 2977, 10.1063/1.333358

Balberg, 1978, J. Magn. Magn. Mater., 7, 12, 10.1016/0304-8853(78)90138-5

Young, 2013, Catal. Sci. Technol., 3, 1660, 10.1039/c3cy00310h

Murphy, 2006, Int. J. Hydrogen Energy, 31, 1999, 10.1016/j.ijhydene.2006.01.014

Katz, 2012, Coord. Chem. Rev., 256, 2521, 10.1016/j.ccr.2012.06.017

Sivula, 2011, ChemSusChem, 4, 432, 10.1002/cssc.201000416

Hamann, 2012, Dalton Trans., 41, 7830, 10.1039/c2dt30340j

Tilley, 2010, Angew. Chem., Int. Ed., 49, 6405, 10.1002/anie.201003110

Li, 2012, Chem. Commun., 48, 8213, 10.1039/c2cc30376k

Kim, 2013, Sci. Rep., 3, 2681, 10.1038/srep02681

Zhang, 2014, Energy Environ. Sci., 7, 1402, 10.1039/C3EE44031A

Park, 2013, Chem. Soc. Rev., 42, 2321, 10.1039/C2CS35260E

Walsh, 2009, Chem. Mater., 21, 547, 10.1021/cm802894z

Hong, 2011, Energy Environ. Sci., 4, 1781, 10.1039/c0ee00743a

Seabold, 2014, Phys. Chem. Chem. Phys., 16, 1121, 10.1039/C3CP54356K

Li, 2013, Energy Environ. Sci., 6, 347, 10.1039/C2EE22618A

Zhong, 2011, J. Am. Chem. Soc., 133, 18370, 10.1021/ja207348x

Abdi, 2012, J. Phys. Chem. C, 116, 9398, 10.1021/jp3007552

Luo, 2011, Energy Environ. Sci., 4, 4046, 10.1039/c1ee01812d

Pilli, 2011, Energy Environ. Sci., 4, 5028, 10.1039/c1ee02444b

Kim, 2014, Science, 343, 990, 10.1126/science.1246913

Bhandari, 2013, Sol. Energy Mater. Sol. Cells, 117, 476, 10.1016/j.solmat.2013.07.018

Mark, 1965, Phys. Rev. [Sect.] A, 137, 203, 10.1103/PhysRev.137.A203

Ebothe, 1986, J. Appl. Phys., 59, 2076, 10.1063/1.336394

Novikov, 1971, Phys. Status Solidi B, 48, 473, 10.1002/pssb.2220480204

Weber, 1988, Z. Phys. B: Condens. Matter, 72, 379, 10.1007/BF01312825

Solar Hydrogen Generation: Toward a Renewable Energy Future, ed. K. Rajeshwar, R. McConnell and S. Licht, Springer, 2008

Bao, 2008, Chem. Mater., 20, 110, 10.1021/cm7029344

Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s

Silva, 2008, J. Phys. Chem. C, 112, 12069, 10.1021/jp8037279

Li, 2009, J. Phys. Chem. C, 113, 9352, 10.1021/jp901505j

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e

Shalom, 2011, J. Phys. Chem. Lett., 2, 1998, 10.1021/jz200863j

Wang, 2014, J. Am. Chem. Soc., 136, 7708, 10.1021/ja5023893

del Alamo, 2011, Nature, 479, 317, 10.1038/nature10677

Allali, 1978, Appl. Phys. Lett., 33, 659, 10.1063/1.90455

On Solar Hydrogen and Nanotechnology, ed. L. Vayssieres, John Wiley & Sons (Asian), 2009

Lee, 2012, Angew. Chem., Int. Ed., 51, 10760, 10.1002/anie.201203174

Ang, 1984, J. Electrochem. Soc., 131, 1462, 10.1149/1.2115874

Khaselev, 2001, Int. J. Hydrogen Energy, 26, 127, 10.1016/S0360-3199(00)00039-2

Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425

Practical Handbook of Photovoltaics: Fundamentals and Applications, ed. V. M. Andreev, Elsevier, 2003

Chen, 2007, Chem. Rev., 107, 2891, 10.1021/cr0500535

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Kongkanand, 2008, J. Am. Chem. Soc., 130, 4007, 10.1021/ja0782706

Prabakar, 2010, J. Phys. D: Appl. Phys., 43, 012002, 10.1088/0022-3727/43/1/012002

Kasowski, 1973, Phys. Rev. Lett., 30, 1175, 10.1103/PhysRevLett.30.1175

Singh, 2012, Eur. Phys. J. B, 85, 392, 10.1140/epjb/e2012-30449-7

The Physics of Semiconductors: An Introduction Including Devices and Nanophysics, ed. M. Grundmann, Springer, Berlin, 2006

Balberg, 1978, J. Magn. Magn. Mater., 7, 12, 10.1016/0304-8853(78)90138-5

Kay, 2006, J. Am. Chem. Soc., 128, 15714, 10.1021/ja064380l

Grela, 1996, J. Phys. Chem., 100, 18214, 10.1021/jp961936q

Formal, 2011, Chem. Sci., 2, 737, 10.1039/C0SC00578A

Formal, 2010, Adv. Funct. Mater., 20, 1099, 10.1002/adfm.200902060

Tanriseven, 2011, J. Appl. Phys., 110, 034508, 10.1063/1.3611387

Gonfa, 2014, Sol. Energy Mater. Sol. Cells, 124, 67, 10.1016/j.solmat.2014.01.037

O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0

Kopidakis, 2000, J. Phys. Chem. B, 104, 3930, 10.1021/jp9936603

Low, 2014, Chem. Commun., 50, 10768, 10.1039/C4CC02553A

Ida, 2014, J. Phys. Chem. Lett., 5, 2533, 10.1021/jz5010957

Nanomaterials, Nanostructures, and Nanotechnologies, ed. A. I. Gusev, Fizmatlit, Moscow, 2007

Zhou, 2013, Angew. Chem., Int. Ed., 52, 8579, 10.1002/anie.201302680

Enache-Pommer, 2009, Phys. Chem. Chem. Phys., 11, 9648, 10.1039/b915345d

Li, 2012, J. Mater. Chem., 22, 20472, 10.1039/c2jm33404f

Li, 2013, J. Mater. Chem. A, 1, 225, 10.1039/C2TA00283C

Chen, 2011, ACS Nano, 5, 4310, 10.1021/nn200100v

Wu, 2010, J. Am. Chem. Soc., 132, 6679, 10.1021/ja909456f

Murakami, 2009, J. Phys. Chem. C, 113, 3062, 10.1021/jp809104t

Mor, 2005, Nano Lett., 5, 191, 10.1021/nl048301k

D. DeMeo , S.MacNaughton, S.Sonkusale and T. E.Vandervelde, Electrodeposited copper oxide and zinc oxide core–shell nanowire photovoltaic cells, in Nanowires—Implementations and Applications, ed. A. Hashim, InTech, 2011

Muskens, 2008, Nano Lett., 8, 2638, 10.1021/nl0808076

Garnett, 2010, Nano Lett., 10, 1082, 10.1021/nl100161z

Cao, 2010, Nano Lett., 10, 439, 10.1021/nl9036627

Kayes, 2005, J. Appl. Phys., 97, 11, 10.1063/1.1901835

Mor, 2007, Nano Lett., 7, 2356, 10.1021/nl0710046

Lin, 2011, J. Am. Chem. Soc., 133, 2398, 10.1021/ja110741z

García-Calzón, 2012, TrAC, Trends Anal. Chem., 35, 27, 10.1016/j.trac.2012.01.003

Baba, 2008, Nat. Photonics, 2, 465, 10.1038/nphoton.2008.146

Lin, 2003, J. Opt. Soc. Am. B, 20, 1538, 10.1364/JOSAB.20.001538

Tao, 2007, Nat. Nanotechnol., 2, 435, 10.1038/nnano.2007.189

Cheng, 2012, Small, 8, 37, 10.1002/smll.201101660

Zhang, 2013, Nano Lett., 13, 14, 10.1021/nl3029202

Semiconductor Nanostructures, ed. D. Bimberg, Springer, 2008

Li, 2007, Chem. Phys., 339, 173, 10.1016/j.chemphys.2007.05.023

Colbeau-Justin, 2003, J. Mater. Sci., 38, 2429, 10.1023/A:1023905102094

Sumita, 2002, Appl. Surf. Sci., 200, 21, 10.1016/S0169-4332(02)00614-1

Shiga, 1998, Bull. Chem. Soc. Jpn., 71, 2119, 10.1246/bcsj.71.2119

Shen, 2006, Chem. Phys. Lett., 419, 464, 10.1016/j.cplett.2005.11.109

Scanlon, 2013, Nat. Mater., 12, 798, 10.1038/nmat3697

Sun, 2003, Catal. Today, 88, 49, 10.1016/j.cattod.2003.08.006

Baiju, 2009, Catal. Lett., 130, 130, 10.1007/s10562-008-9798-5

Zhang, 2008, Angew. Chem., Int. Ed., 47, 1766, 10.1002/anie.200704788

Joshi, 1990, IEEE Trans. Electron Devices, 37, 237, 10.1109/16.43821

Doshchanov, 1996, Semiconductors, 30, 305

Kelly, 1998, Electrochim. Acta, 43, 2773, 10.1016/S0013-4686(98)00018-8

Lai, 2013, J. Mater. Chem. A, 1, 4182, 10.1039/c3ta00188a

Wu, 2012, J. Phys. Chem. C, 116, 26800, 10.1021/jp3087495

Yang, 2008, Nature, 453, 638, 10.1038/nature06964

Zheng, 2013, J. Mater. Chem. A, 1, 12635, 10.1039/c3ta12946b

Jiao, 2013, Chem. Commun., 49, 636, 10.1039/C2CC37324F

Lu, 2011, Phys. Chem. Chem. Phys., 13, 18063, 10.1039/c1cp22726b

Hotsenpiller, 1998, J. Phys. Chem. B, 102, 3216, 10.1021/jp980104k

Ohno, 2002, New J. Chem., 26, 1167, 10.1039/b202140d

Liu, 2010, Nanoscale, 2, 1115, 10.1039/c0nr00050g

Photoelectrochemical Hydrogen Production, ed. R. van de Krol and M. Graetzel, Springer, New York, 2012

Bak, 2002, Int. J. Hydrogen Energy, 27, 991, 10.1016/S0360-3199(02)00022-8

Electrochemistry of semiconductor and oxidized metal electrodes, ed. S. R. Morrison, Plenum, New York, 1980

J. R. Bolton , A. F.Haught and R. T.Ross, Photochemical energy storage: an analysis of limits, in Photochemical Conversion and Storage of Solar Energy, ed. J. S. Connolly, Academic Press, New York, 1981

Weber, 1986, Int. J. Hydrogen Energy, 11, 225, 10.1016/0360-3199(86)90183-7

Asashi, 2001, Science, 293, 269, 10.1126/science.1061051

Borgarello, 1982, J. Am. Chem. Soc., 104, 2996, 10.1021/ja00375a010

Henderson, 2003, J. Am. Chem. Soc., 125, 14974, 10.1021/ja037764+

Anpo, 2003, J. Catal., 216, 505, 10.1016/S0021-9517(02)00104-5

Hahn, 2013, Catal. Sci. Technol., 3, 1765, 10.1039/c3cy00021d

Sato, 1986, Chem. Phys. Lett., 123, 126, 10.1016/0009-2614(86)87026-9

Sakthivel, 2003, Angew. Chem., Int. Ed., 42, 4908, 10.1002/anie.200351577

Irie, 2003, J. Phys. Chem. B, 107, 5483, 10.1021/jp030133h

Lee, 2005, Appl. Phys. Lett., 87, 011904, 10.1063/1.1991982

Batzil, 2006, Phys. Rev. Lett., 96, 026103, 10.1103/PhysRevLett.96.026103

Wang, 2009, J. Am. Chem. Soc., 131, 12290, 10.1021/ja903781h

Tafen, 2009, Appl. Phys. Lett., 94, 093101, 10.1063/1.3093820

Miyagi, 2004, Jpn. J. Appl. Phys., 43, 775, 10.1143/JJAP.43.775

Maruska, 1979, Sol. Energy Mater., 1, 237, 10.1016/0165-1633(79)90042-X

Salvador, 1982, Sol. Energy Mater., 6, 241, 10.1016/0165-1633(82)90024-7

Meng, 2011, Appl. Phys. Lett., 98, 112104, 10.1063/1.3567766

Choi, 1994, J. Phys. Chem., 98, 13669, 10.1021/j100102a038

Chen, 2011, Science, 331, 746, 10.1126/science.1200448

Hu, 2012, Angew. Chem., Int. Ed., 51, 12410, 10.1002/anie.201206375

Wang, 2011, Nano Lett., 11, 3026, 10.1021/nl201766h

Yang, 2013, J. Am. Chem. Soc., 135, 17831, 10.1021/ja4076748

Wang, 2013, Energy Environ. Sci., 6, 3007, 10.1039/c3ee41817k

Lin, 2014, Energy Environ. Sci., 7, 967, 10.1039/c3ee42708k

Xia, 2013, J. Mater. Chem. A, 1, 2983, 10.1039/c3ta01589k

Cui, 2014, J. Mater. Chem. A, 2, 8612, 10.1039/C4TA00176A

Liu, 2014, Nano Lett., 14, 3309, 10.1021/nl500710j

Li, 2013, Phys. Chem. Chem. Phys., 15, 16220, 10.1039/c3cp51902c

Meng, 2012, Nano Res., 5, 213, 10.1007/s12274-012-0201-x

Meng, 2013, Catal. Today, 199, 48, 10.1016/j.cattod.2012.05.038

Wei, 1988, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 8958, 10.1103/PhysRevB.37.8958

Maeda, 2005, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777

Lee, 2007, J. Phys. Chem. C, 111, 1042, 10.1021/jp0656532

Kitano, 2010, J. Mater. Chem., 20, 627, 10.1039/B910180B

Ouyang, 2011, J. Am. Chem. Soc., 133, 7757, 10.1021/ja110691t

Wang, 2009, J. Phys. Chem. C, 113, 3785, 10.1021/jp807393a

Yao, 2006, J. Phys. Chem. B, 110, 11188, 10.1021/jp0608729

Linic, 2011, Nat. Mater., 10, 911, 10.1038/nmat3151

Cushing, 2013, Interface, 2, 63

Atwater, 2010, Nat. Mater., 9, 205, 10.1038/nmat2629

Clavero, 2014, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238

Warren, 2012, Energy Environ. Sci., 5, 5133, 10.1039/C1EE02875H

Li, 2013, Nat. Commun., 4, 2651, 10.1038/ncomms3651

Tian, 2004, Chem. Commun., 1810, 10.1039/b405061d

Tian, 2005, J. Am. Chem. Soc., 127, 7632, 10.1021/ja042192u

Cushing, 2012, J. Am. Chem. Soc., 134, 15033, 10.1021/ja305603t

Mertz, 2000, J. Opt. Soc. Am. B, 17, 1906, 10.1364/JOSAB.17.001906

Surface Plasmon on Smooth and Rough Surfaces and on Gratings, ed. H. Raether, Springer, 1988

Gao, 2012, ACS Nano, 6, 234, 10.1021/nn203457a

Dotan, 2013, Nat. Mater., 12, 158, 10.1038/nmat3477

Knight, 2011, Science, 332, 702, 10.1126/science.1203056

Wang, 2011, Nano Lett., 11, 5426, 10.1021/nl203196z

Nishijima, 2012, J. Phys. Chem. Lett., 3, 1248, 10.1021/jz3003316

Knight, 2013, Nano Lett., 13, 1687, 10.1021/nl400196z

Mubeen, 2013, Nat. Nanotechnol., 8, 247, 10.1038/nnano.2013.18

Mubeen, 2011, Nano Lett., 11, 5548, 10.1021/nl203457v

Li, 2013, ACS Catal., 3, 47, 10.1021/cs300672f

Wu, 2013, Nano Lett., 13, 5255, 10.1021/nl402730m

White, 2012, Appl. Phys. Lett., 101, 073905, 10.1063/1.4746425

Govorova, 2014, Nano Today, 9, 85, 10.1016/j.nantod.2014.02.006

Pu, 2013, Nano Lett., 13, 3817, 10.1021/nl4018385

Kimura, 2012, J. Phys. Chem. C, 116, 7111, 10.1021/jp301681n

Furube, 2007, J. Am. Chem. Soc., 129, 14852, 10.1021/ja076134v

Inouye, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 57, 11334, 10.1103/PhysRevB.57.11334

Kumar, 2011, ACS Catal., 1, 300, 10.1021/cs100117v

Thomann, 2011, Nano Lett., 11, 3440, 10.1021/nl201908s

Awazu, 2008, J. Am. Chem. Soc., 130, 1676, 10.1021/ja076503n

Torimoto, 2011, J. Phys. Chem. Lett., 2, 2057, 10.1021/jz2009049

Zhou, 2013, J. Mater. Chem. A, 1, 13128, 10.1039/c3ta12540h

Xu, 2013, Nanoscale Res. Lett., 8, 73, 10.1186/1556-276X-8-73

Aydin, 2011, Nat. Commun., 2, 517, 10.1038/ncomms1528

Yana, 2009, J. Alloys Compd., 472, 429, 10.1016/j.jallcom.2008.04.078

Zhang, 2010, ACS Nano, 4, 387, 10.1021/nn901087c

D'Amico, 2012, Appl. Phys. Lett., 101, 141606, 10.1063/1.4757281

Jang, 2012, Catal. Today, 185, 270, 10.1016/j.cattod.2011.07.008

Lin, 2012, J. Am. Chem. Soc., 134, 5508, 10.1021/ja300319g

Mayer, 2013, Acc. Chem. Res., 46, 1558, 10.1021/ar300302z

Meng, 2013, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s

Wang, 2013, Energy Environ. Sci., 6, 1211, 10.1039/c3ee24162a

Tsai, 2011, Nanoscale Res. Lett., 6, 575, 10.1186/1556-276X-6-575

Kim, 2005, Angew. Chem., 117, 4661, 10.1002/ange.200500064

Kim, 2009, Chem. Commun., 5889, 10.1039/b911805e

Serpone, 1984, J. Chem. Soc., Chem. Commun., 342, 10.1039/C39840000342

Yoshimura, 1988, Chem. Phys. Lett., 147, 401, 10.1016/0009-2614(88)80256-2

Gerischer, 1986, J. Electroanal. Chem., 204, 225, 10.1016/0022-0728(86)80520-4

Kohtani, 1993, Chem. Phys. Lett., 206, 166, 10.1016/0009-2614(93)85535-V

Wang, 2010, J. Phys. Chem. Lett., 1, 1030, 10.1021/jz100144w

Kim, 2011, J. Phys. Chem. C, 115, 9797, 10.1021/jp1122823

Navarro, 2008, Int. J. Hydrogen Energy, 33, 4265, 10.1016/j.ijhydene.2008.05.048

Qu, 2013, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E

Konstantatos, 2006, Nature, 442, 180, 10.1038/nature04855

Mcdonald, 2005, Nat. Mater., 4, 138, 10.1038/nmat1299

Dissanayake, 2008, Appl. Phys. Lett., 93, 043501, 10.1063/1.2964203

Linnros, 1998, J. Appl. Phys., 84, 275, 10.1063/1.368024

Linnros, 1998, J. Appl. Phys., 84, 284, 10.1063/1.368025

Landsberg, 1987, Appl. Phys. Lett., 50, 745, 10.1063/1.98086

Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017

Mayer, 2012, J. Am. Chem. Soc., 134, 12406, 10.1021/ja3051734

Hwang, 2009, Nano Lett., 9, 410, 10.1021/nl8032763

Yu, 2005, Appl. Catal., A, 289, 186, 10.1016/j.apcata.2005.04.057

Kongkanand, 2007, Nano Lett., 7, 676, 10.1021/nl0627238

Woan, 2009, Adv. Mater., 21, 2233, 10.1002/adma.200802738

Williams, 2008, ACS Nano, 2, 1487, 10.1021/nn800251f

Zhang, 2010, ACS Nano, 4, 380, 10.1021/nn901221k

Xiang, 2012, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J

Ng, 2010, J. Phys. Chem. Lett., 1, 2607, 10.1021/jz100978u

Zhang, 2010, J. Mater. Chem., 20, 2801, 10.1039/b917240h

Stankovich, 2006, Nature, 442, 282, 10.1038/nature04969

Meng, 2013, ACS Catal., 3, 746, 10.1021/cs300740e

Sun, 2013, ACS Appl. Mater. Interfaces, 5, 13035, 10.1021/am403937y

Hou, 2012, Nano Lett., 12, 6464, 10.1021/nl303961c

Brillet, 2012, Nat. Photonics, 6, 824, 10.1038/nphoton.2012.265

Reece, 2011, Science, 334, 645, 10.1126/science.1209816

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966

Maeda, 2013, ACS Catal., 3, 1486, 10.1021/cs4002089

Kudo, 2011, MRS Bull., 36, 32, 10.1557/mrs.2010.3

Kato, 2004, Chem. Lett., 33, 1348, 10.1246/cl.2004.1348

Higashi, 2008, Chem. Phys. Lett., 452, 120, 10.1016/j.cplett.2007.12.021

Higashi, 2009, Chem. Mater., 21, 1543, 10.1021/cm803145n

Maeda, 2011, J. Phys. Chem. C, 115, 3057, 10.1021/jp110025x

Abe, 2011, ChemSusChem, 4, 228, 10.1002/cssc.201190005

Higashi, 2008, Chem. Lett., 37, 138, 10.1246/cl.2008.138

Sasaki, 2013, J. Am. Chem. Soc., 135, 5441, 10.1021/ja400238r

Sasaki, 2009, J. Phys. Chem. C, 113, 17536, 10.1021/jp907128k

Ma, 2013, Chem. – Eur. J., 19, 7480, 10.1002/chem.201300579

Abe, 2001, Chem. Phys. Lett., 344, 339, 10.1016/S0009-2614(01)00790-4

Maeda, 2013, ACS Catal., 4, 1013

Iwase, 2011, J. Am. Chem. Soc., 133, 11054, 10.1021/ja203296z

Tada, 2006, Nat. Mater., 5, 782, 10.1038/nmat1734

Yun, 2011, ACS Nano, 5, 4084, 10.1021/nn2006738

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397

Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Trasatti, 1984, Electrochim. Acta, 29, 1503, 10.1016/0013-4686(84)85004-5

Fabbri, 2014, Catal. Sci. Technol., 10.1039/C4CY00669K

Riha, 2013, ACS Nano, 7, 2396, 10.1021/nn305639z

Xi, 2012, J. Phys. Chem. C, 116, 13884, 10.1021/jp304285r

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Zhong, 2011, J. Am. Chem. Soc., 133, 18370, 10.1021/ja207348x

Klahr, 2012, J. Am. Chem. Soc., 134, 16693, 10.1021/ja306427f

Steinmiller, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 20633, 10.1073/pnas.0910203106

Bledowski, 2012, ChemPhysChem, 13, 3018, 10.1002/cphc.201200071

Liu, 2014, J. Solid State Electrochem., 18, 157, 10.1007/s10008-013-2228-7

Chemelewski, 2014, J. Am. Chem. Soc., 136, 2843, 10.1021/ja411835a

Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c

Trasatti, 1972, J. Electroanal. Chem., 39, 163, 10.1016/S0022-0728(72)80485-6

Kamat, 2012, J. Phys. Chem. Lett., 3, 663, 10.1021/jz201629p

Maeda, 2006, Angew. Chem., Int. Ed., 45, 7970, 10.1002/ange.200602473

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Lee, 2002, J. Mater. Chem., 12, 614, 10.1039/b108062h

Jaramillo, 2007, Science, 317, 1284, 10.1126/science.1141483

Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008

Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Hou, 2013, Adv. Mater., 25, 6291, 10.1002/adma.201303116

Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h