Semiclassical electron and phonon transport from first principles: application to layered thermoelectrics

Springer Science and Business Media LLC - Tập 22 - Trang 1281-1309 - 2023
Anderson S. Chaves1, Michele Pizzochero1, Daniel T. Larson2, Alex Antonelli3, Efthimios Kaxiras1,2
1School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
2Department of Physics, Harvard University, Cambridge, USA
3Gleb Wataghin Institute of Physics and Centre for Computational Engineering and Sciences, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil

Tóm tắt

Thermoelectrics are a promising class of materials for renewable energy owing to their capability to generate electricity from waste heat, with their performance being governed by a competition between charge and thermal transport. A detailed understanding of energy transport at the nanoscale is thus of paramount importance for developing efficient thermoelectrics. Here, we provide a comprehensive overview of the methodologies adopted for the computational design and optimization of thermoelectric materials from first-principles calculations. First, we introduce density-functional theory, the fundamental tool to describe the electronic and vibrational properties of solids. Next, we review charge and thermal transport in the semiclassical framework of the Boltzmann transport equation, with a particular emphasis on the various scattering mechanisms between phonons, electrons, and impurities. Finally, we illustrate how these approaches can be deployed in determining the figure of merit of tin and germanium selenides, an emerging family of layered thermoelectrics that exhibits a promising figure of merit. Overall, this review article offers practical guidelines to achieve an accurate assessment of the thermoelectric properties of materials by means of computer simulations.

Tài liệu tham khảo

Yang, L., Chen, Z.-G., Dargusch, M.S., Zou, J.: High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8, 1701797 (2018). https://doi.org/10.1002/aenm.201701797 Hasan, M.N., Wahid, H., Nayan, N., Mohamed Ali, M.S.: Inorganic thermoelectric materials: a review. Int. J. Energy Res. 44, 6170 (2020). https://doi.org/10.1002/er.5313 Zoui, M.A., Bentouba, S., Stocholm, J.G., Bourouis, M.: A review on thermoelectric generators: progress and applications. Energies 13, 3606 (2020). https://doi.org/10.3390/en13143606 Gutiérrez Moreno, J.J., Cao, J., Fronzi, M., Assadi, M.H.N.: A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy (2020). https://doi.org/10.1007/s40243-020-00175-5 Giustino, F.: Materials Modelling Using Density Functional Theory: Properties and Predictions. Oxford University Press (2014) Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. Dover (1996) Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864 Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133 Sholl, D., Steckel, J.A.: Density Functional Theory: A Practical Introduction. Wiley (2009) Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press (1994) Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980). https://doi.org/10.1103/PhysRevLett.45.566 Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865 Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244 Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406 Zhang, Y., Yang, W.: Comment on Generalized gradient approximation made simple. Phys. Rev. Lett. 80, 890 (1998). https://doi.org/10.1103/PhysRevLett.80.890 Sun, J., Marsman, M., Csonka, G.I., Ruzsinszky, A., Hao, P., Kim, Y.-S., Kresse, G., Perdew, J.P.: Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Phys. Rev. B 84, 035117 (2011). https://doi.org/10.1103/PhysRevB.84.035117 Sun, J., Ruzsinszky, A., Perdew, J.P.: Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015). https://doi.org/10.1103/PhysRevLett.115.036402 Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933 Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060 Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E.: Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). https://doi.org/10.1063/1.2404663 Görling, A.: Density-functional theory for excited states. Phys. Rev. A 54, 3912 (1996) Cohen, A.J., Mori-Sánchez, P., Yang, W.: Insights into current limitations of density functional theory. Science 321, 792 (2008) Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Côté, M., Deutsch, T., Genovese, L., Ghosez, P., Giantomassi, M., Goedecker, S., Hamann, D., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.-M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M., Zerah, G., Zwanziger, J.: Abinit: first-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582 (2009). https://doi.org/10.1016/j.cpc.2009.07.007 Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C.: First principles methods using castep. Z. Krist. Cryst. Mater. 220, 567 (2005). https://doi.org/10.1524/zkri.220.5.567.65075 Hutter, J., Iannuzzi, M., Schiffmann, F., VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15 (2014). https://doi.org/10.1002/wcms.1159 Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Møller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Nørskov, J.K., Puska, M., Rantala, T.T., Schiøtz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202 Prentice, J.C., Aarons, J., Womack, J.C., Allen, A.E., Andrinopoulos, L., Anton, L., Bell, R.A., Bhandari, A., Bramley, G.A., Charlton, R.J., et al.: The onetep linear-scaling density functional theory program. J. Chem. Phys. 152, 174111 (2020). https://doi.org/10.1063/5.0004445 Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502 Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169 Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0 Marzari, N., Vanderbilt, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997). https://doi.org/10.1103/PhysRevB.56.12847 Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012). https://doi.org/10.1103/RevModPhys.84.1419 Mostofi, A.A., Yates, J.R., Lee, Y.-S., Souza, I., Vanderbilt, D., Marzari, N.: wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008). https://doi.org/10.1016/j.cpc.2007.11.016 Mostofi, A.A., Yates, J.R., Pizzi, G., Lee, Y.-S., Souza, I., Vanderbilt, D., Marzari, N.: An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309 (2014). https://doi.org/10.1016/j.cpc.2014.05.003 Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press (1966) Hellmann, H.: Einfuhrung in Die Quantenchemie. F. Deuticke, Leipzig (1937) Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340 (1939). https://doi.org/10.1103/PhysRev.56.340 DeCicco, P., Johnson, F.: The quantum theory of lattice dynamics. IV. Proc. Lond. A R. Soc. Math. Phys. Sci. 310, 111 (1969). https://doi.org/10.1098/rspa.1969.0066 Pick, R.M., Cohen, M.H., Martin, R.M.: Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910 (1970). https://doi.org/10.1103/PhysRevB.1.910 Maradudin, A.A., Vosko, S.H.: Symmetry properties of the normal vibrations of a crystal. Rev. Mod. Phys. 40, 1 (1968). https://doi.org/10.1103/RevModPhys.40.1 Baroni, S., Giannozzi, P., Testa, A.: Elastic constants of crystals from linear-response theory. Phys. Rev. Lett. 59, 2662 (1987). https://doi.org/10.1103/PhysRevLett.59.2662 Levine, Z.H., Allan, D.C.: Linear optical response in silicon and germanium including self-energy effects. Phys. Rev. Lett. 63, 1719 (1989). https://doi.org/10.1103/PhysRevLett.63.1719 Giannozzi, P., De Gironcoli, S., Pavone, P., Baroni, S.: Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231 (1991). https://doi.org/10.1103/PhysRevB.43.7231 de Gironcoli, S., Baroni, S., Resta, R.: Piezoelectric properties of III–V semiconductors from first-principles linear-response theory. Phys. Rev. Lett. 62, 2853 (1989). https://doi.org/10.1103/PhysRevLett.62.2853 de Gironcoli, S., Giannozzi, P., Baroni, S.: Structure and thermodynamics of Si\(_x\) Ge\(_{1-x}\) alloys from ab initio Monte Carlo simulations. Phys. Rev. Lett. 66, 2116 (1991). https://doi.org/10.1103/PhysRevLett.66.2116 Dal Corso, A., Baroni, S., Resta, R.: Density-functional theory of the dielectric constant: gradient-corrected calculation for silicon. Phys. Rev. B 49, 5323 (1994). https://doi.org/10.1103/PhysRevB.49.5323 Quong, A.A., Eguiluz, A.G.: First-principles evaluation of dynamical response and plasmon dispersion in metals. Phys. Rev. Lett. 70, 3955 (1993). https://doi.org/10.1103/PhysRevLett.70.3955 Stengel, M.: Flexoelectricity from density-functional perturbation theory. Phys. Rev. B 88, 174106 (2013). https://doi.org/10.1103/PhysRevB.88.174106 Dreyer, C.E., Stengel, M., Vanderbilt, D.: Current-density implementation for calculating flexoelectric coefficients. Phys. Rev. B 98, 075153 (2018). https://doi.org/10.1103/PhysRevB.98.075153 Royo, M., Stengel, M.: First-principles theory of spatial dispersion: dynamical quadrupoles and flexoelectricity. Phys. Rev. X 9, 021050 (2019). https://doi.org/10.1103/PhysRevX.9.021050 Stott, M., Zaremba, E.: Linear-response theory within the density-functional formalism: application to atomic polarizabilities. Phys. Rev. A 21, 12 (1980). https://doi.org/10.1103/PhysRevA.21.12 Zangwill, A., Soven, P.: Resonant photoemission in barium and cerium. Phys. Rev. Lett. 45, 204 (1980). https://doi.org/10.1103/PhysRevLett.45.204 Mahan, G.: Modified Sternheimer equation for polarizability. Phys. Rev. A 22, 1780 (1980). https://doi.org/10.1103/PhysRevA.22.1780 Ghosh, S.K., Deb, B.M.: Dynamic polarizability of many-electron systems within a time-dependent density-functional theory. Chem. Phys. 71, 295 (1982). https://doi.org/10.1016/0301-0104(82)87030-4 Zein, N.: On density functional calculations of crystal elastic modula and phonon spectra. Fiz. Tverd. Tela 26, 3028 (1984) Baroni, S., Giannozzi, P., Testa, A.: Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861 (1987). https://doi.org/10.1103/PhysRevLett.58.1861 Gonze, X., Allan, D.C., Teter, M.P.: Dielectric tensor, effective charges, and phonons in \(\alpha\)-quartz by variational density-functional perturbation theory. Phys. Rev. Lett. 68, 3603 (1992). https://doi.org/10.1103/PhysRevLett.68.3603 Gonze, X., Vigneron, J.-P.: Density-functional approach to nonlinear-response coefficients of solids. Phys. Rev. B 39, 13120 (1989). https://doi.org/10.1103/PhysRevB.39.13120 Hirschfelder, J.O., Brown, W.B., Epstein, S.T.: Recent developments in perturbation theory. In: Advances in Quantum Chemistry. Academic Press Inc., pp. 255–374 (1964) Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001). https://doi.org/10.1103/RevModPhys.73.515 Gonze, X.: Adiabatic density-functional perturbation theory. Phys. Rev. A 52, 1096 (1995). https://doi.org/10.1103/PhysRevA.52.1096 Gonze, X.: Perturbation expansion of variational principles at arbitrary order. Phys. Rev. A 52, 1086 (1995). https://doi.org/10.1103/PhysRevA.52.1086 Lam, P.K., Cohen, M.L.: Ab initio calculation of phonon frequencies of Al. Phys. Rev. B 25, 6139 (1982). https://doi.org/10.1103/PhysRevB.25.6139 Togo, A.: First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023). https://doi.org/10.7566/JPSJ.92.012001 McGaughey, A.J., Kaviany, M.: Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Adv. Heat Transf. 39, 169 (2006). https://doi.org/10.1016/S0065-2717(06)39002-8 Kong, L.T.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182, 2201 (2011). https://doi.org/10.1016/j.cpc.2011.04.019 Hellman, O., Abrikosov, I., Simak, S.: Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011) Unke, O.T., Chmiela, S., Sauceda, H.E., Gastegger, M., Poltavsky, I., Schütt, K.T., Tkatchenko, A., Müller, K.-R.: Machine learning force fields. Chem. Rev. 121, 10142 (2021) Haug, H., Jauho, A.-P., Cardona, M.: Quantum Kinetics in Transport and Optics of Semiconductors, vol. 2. Springer (2008) Stefanucci, G., Van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction. Cambridge University Press (2013) Mahan, G.D.: Condensed matter in a nutshell. In: Condensed Matter in a Nutshell. Princeton University Press (2010) Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570 Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966). https://doi.org/10.1088/0034-4885/29/1/306 Thouless, D.: Relation between the Kubo–Greenwood formula and the Boltzmann equation for electrical conductivity. Phil. Mag. 32, 877 (1975). https://doi.org/10.1080/14786437508221628 Poncé, S., Li, W., Reichardt, S., Giustino, F.: First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83, 036501 (2020). https://doi.org/10.1088/1361-6633/ab6a43 Sangalli, D., Marini, A.: Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse. Europhys. Lett. 110, 47004 (2015). https://doi.org/10.1209/0295-5075/110/47004 Landau, L.: On the theory of the fermi liquid. Sov. Phys. JETP 8, 70 (1959) Pines, D.: Theory of Quantum Liquids: Normal Fermi Liquids. CRC Press (2018) Pottier, N.: Nonequilibrium Statistical Physics: Linear Irreversible Processes. Oxford University Press (2009) Peierls, R.: Some simple remarks on the basis of transport theory. In: Transport Phenomena. Springer, pp. 1–33 (1974) Hussey, N.E., Takenaka, K., Takagi, H.: Universality of the Mott–Ioffe–Regel limit in metals. Phil. Mag. 84, 2847 (2004). https://doi.org/10.1080/14786430410001716944 Emery, V.J., Kivelson, S.A.: Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253 (1995). https://doi.org/10.1103/PhysRevLett.74.3253 Hartnoll, S.A.: Theory of universal incoherent metallic transport. Nat. Phys. 11, 54 (2015). https://doi.org/10.1038/nphys3174 Chang, B.K., Zhou, J.-J., Lee, N.-E., Bernardi, M.: Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach. npj Comput. Mater. 8, 63 (2022). https://doi.org/10.1038/s41524-022-00742-6 Kohn, W., Luttinger, J.M.: Quantum theory of electrical transport phenomena. Phys. Rev. 108, 590 (1957). https://doi.org/10.1103/PhysRev.108.590 Luttinger, J.M., Kohn, W.: Quantum theory of electrical transport phenomena. II. Phys. Rev. 109, 1892 (1958). https://doi.org/10.1103/PhysRev.109.1892 Protik, N.H., Li, C., Pruneda, M., Broido, D., Ordejón, P.: The elphbolt ab initio solver for the coupled electron–phonon Boltzmann transport equations. npj Comput. Mater. 8, 28 (2022). https://doi.org/10.1038/s41524-022-00710-0 Xiao, D., Chang, M.-C., Niu, Q.: Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010) von Neumann, J.: Proof of the ergodic theorem and the H-theorem in quantum mechanics. Eur. Phys. J. H 35, 201 (2010). https://doi.org/10.1140/epjh/e2010-00008-5 Kadanoff, L.P.: Entropy is in flux V3.4. J. Stat. Phys. 167, 1039 (2017). https://doi.org/10.1007/s10955-017-1766-2 Allen, P.: Boltzmann theory and resistivity of metals. Kluwer International Series In Engineering And Computer Science, p. 219 (1996) Poncé, S., Margine, E.R., Giustino, F.: Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys. Rev. B 97, 121201 (2018). https://doi.org/10.1103/PhysRevB.97.121201 Liu, Y., Yuan, Z., Wesselink, R., Starikov, A.A., Van Schilfgaarde, M., Kelly, P.J.: Direct method for calculating temperature-dependent transport properties. Phys. Rev. B 91, 220405 (2015). https://doi.org/10.1103/PhysRevB.91.220405 Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press (2001) Grimvall, G.: The electron–phonon interaction in metals. North-Holland, Amsterdam (1981) Askerov, B.M., Figarova, S.: Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases. Springer Series on Atomic, Optical and Plasma Physics, vol. 57. Springer (2009) Chaves, A.S., González-Romero, R.L., Meléndez, J.J., Antonelli, A.: Investigating charge carrier scattering processes in anisotropic semiconductors through first-principles calculations: the case of p-type SnSe. Phys. Chem. Chem. Phys. 23, 900 (2021). https://doi.org/10.1039/D0CP05022A Ahmad, S., Mahanti, S.: Energy and temperature dependence of relaxation time and Wiedemann–Franz law on PbTe. Phys. Rev. B 81, 165203 (2010). https://doi.org/10.1103/PhysRevB.81.165203 Ravich, Y.I., Efimova, B., Tamarchenko, V.: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Status Solidi (B) 43, 11 (1971). https://doi.org/10.1002/pssb.2220430102 Li, W.: Electrical transport limited by electron–phonon coupling from Boltzmann transport equation: an ab initio study of Si, Al, and MoS\(_2\). Phys. Rev. B 92, 075405 (2015). https://doi.org/10.1103/PhysRevB.92.075405 Poncé, S., Margine, E.R., Verdi, C., Giustino, F.: Epw: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116 (2016). https://doi.org/10.1016/j.cpc.2016.07.028 Li, W., Carrete, J., Katcho, N.A., Mingo, N.: ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014). https://doi.org/10.1016/j.cpc.2014.02.015 Zhou, J.-J., Park, J., Lu, I.-T., Maliyov, I., Tong, X., Bernardi, M.: Perturbo: a software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 264, 107970 (2021). https://doi.org/10.1016/j.cpc.2021.107970 Cepellotti, A., Coulter, J., Johansson, A., Fedorova, N.S., Kozinsky, B.: Phoebe: a high-performance framework for solving phonon and electron Boltzmann transport equations. J. Phys. Mater. 5, 035003 (2022). https://doi.org/10.1088/2515-7639/ac86f6 Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931). https://doi.org/10.1103/PhysRev.37.405 Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931). https://doi.org/10.1103/PhysRev.38.2265 Callen, H.B.: The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349 (1948). https://doi.org/10.1103/PhysRev.73.1349 Groot, S.R.: Thermodynamics of Irreversible Processes, vol. 3. North-Holland Publishing Company (1963) Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley (1995) Goupil, C., Seifert, W., Zabrocki, K., Müller, E., Snyder, G.J.: Thermodynamics of thermoelectric phenomena and applications. Entropy 13, 1481 (2011). https://doi.org/10.3390/e13081481 Feldhoff, A.: Thermoelectric material tensor derived from the Onsager–de Groot–Callen model. Energy Harvest. Syst. 2, 5 (2015). https://doi.org/10.1515/ehs-2014-0040 Chaikin, P.: An introduction to thermopower for those who might want to use it to study organic conductors and superconductors. In: Organic Superconductivity. Springer, pp. 101–115 (1990) Robinson, J.E.: Thermoelectric power in the nearly-free-electron model. Phys. Rev. 161, 533 (1967). https://doi.org/10.1103/PhysRev.161.533 Feldhoff, A., Geppert, B.: A high-temperature thermoelectric generator based on oxides. Energy Harvest. Syst. 1, 69 (2014). https://doi.org/10.1515/ehs-2014-0016 Antončík, E.: On the theory of temperature shift of the absorption curve in non-polar crystals. Cechoslov. Fiz. Z. 5, 449 (1955). https://doi.org/10.1007/BF01687209 Lautenschlager, P., Allen, P., Cardona, M.: Phonon-induced lifetime broadenings of electronic states and critical points in Si and Ge. Phys. Rev. B 33, 5501 (1986). https://doi.org/10.1103/PhysRevB.33.5501 Giustino, F.: Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017). https://doi.org/10.1103/RevModPhys.89.015003 Keating, P.: Dielectric screening and the phonon spectra of metallic and nonmetallic crystals. Phys. Rev. 175, 1171 (1968). https://doi.org/10.1103/PhysRev.175.1171 Marini, A., Poncé, S., Gonze, X.: Many-body perturbation theory approach to the electron-phonon interaction with density-functional theory as a starting point. Phys. Rev. B 91, 224310 (2015). https://doi.org/10.1103/PhysRevB.91.224310 Baym, G.: Field-theoretic approach to the properties of the solid state. Ann. Phys. 14, 1 (1961). https://doi.org/10.1016/0003-4916(61)90050-1 Hedin, L., Lundqvist, S.: Effects of electron–electron and electron–phonon interactions on the one-electron states of solids. In: Solid State Physics, vol. 23. Elsevier, pp. 1–181 (1970) Migdal, A.: Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 7, 996 (1958) Allen, P.B., Mitrović, B.: Theory of superconducting \(T_c\). Solid State Phys. 37, 1 (1983). https://doi.org/10.1016/S0081-1947(08)60665-7 Mustafa, J.I., Bernardi, M., Neaton, J.B., Louie, S.G.: Ab initio electronic relaxation times and transport in noble metals. Phys. Rev. B 94, 155105 (2016). https://doi.org/10.1103/PhysRevB.94.155105 Gonze, X., Lee, C.: Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997). https://doi.org/10.1103/PhysRevB.55.10355 Verdi, C., Giustino, F.: Fröhlich electron–phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015). https://doi.org/10.1103/PhysRevLett.115.176401 Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, London (1954) Frölich, H.: Electrical breakdown in solid crystals. Proc. R. Soc. 160, 230–238 (1937) Callen, H.B.: Electric breakdown in ionic crystals. Phys. Rev. 76, 1394 (1949). https://doi.org/10.1103/PhysRev.76.1394 Howarth, D., Sondheimer, E.: The theory of electronic conduction in polar semi-conductors. Proc. R. Soc. Lond. A 219, 53 (1953). https://doi.org/10.1098/rspa.1953.0130 Vogl, P.: Microscopic theory of electron–phonon interaction in insulators or semiconductors. Phys. Rev. B 13, 694 (1976). https://doi.org/10.1103/PhysRevB.13.694 Lawaetz, P.: Long-wavelength phonon scattering in nonpolar semiconductors. Phys. Rev. 183, 730 (1969). https://doi.org/10.1103/PhysRev.183.730 Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927 (2000). https://doi.org/10.1103/PhysRevB.62.4927 Sjakste, J., Vast, N., Calandra, M., Mauri, F.: Wannier interpolation of the electron–phonon matrix elements in polar semiconductors: Polar-optical coupling in GAAS. Phys. Rev. B 92, 054307 (2015). https://doi.org/10.1103/PhysRevB.92.054307 Brunin, G., Miranda, H.P.C., Giantomassi, M., Royo, M., Stengel, M., Verstraete, M.J., Gonze, X., Rignanese, G.-M., Hautier, G.: Electron–phonon beyond Fröhlich: dynamical quadrupoles in polar and covalent solids. Phys. Rev. Lett. 125, 136601 (2020). https://doi.org/10.1103/PhysRevLett.125.136601 Brunin, G., Miranda, H.P.C., Giantomassi, M., Royo, M., Stengel, M., Verstraete, M.J., Gonze, X., Rignanese, G.-M., Hautier, G.: Phonon-limited electron mobility in Si, GAAS, and gap with exact treatment of dynamical quadrupoles. Phys. Rev. B 102, 094308 (2020). https://doi.org/10.1103/PhysRevB.102.094308 Jhalani, V.A., Zhou, J.-J., Park, J., Dreyer, C.E., Bernardi, M.: Piezoelectric electron–phonon interaction from ab initio dynamical quadrupoles: impact on charge transport in wurtzite GaN. Phys. Rev. Lett. 125, 136602 (2020). https://doi.org/10.1103/PhysRevLett.125.136602 Park, J., Zhou, J.-J., Jhalani, V.A., Dreyer, C.E., Bernardi, M.: Long-range quadrupole electron–phonon interaction from first principles. Phys. Rev. B 102, 125203 (2020). https://doi.org/10.1103/PhysRevB.102.125203 Martin, R.M.: Piezoelectricity. Phys. Rev. B 5, 1607 (1972). https://doi.org/10.1103/PhysRevB.5.1607 Poncé, S., Macheda, F., Margine, E.R., Marzari, N., Bonini, N., Giustino, F.: First-principles predictions of hall and drift mobilities in semiconductors. Phys. Rev. Res. 3, 043022 (2021). https://doi.org/10.1103/PhysRevResearch.3.043022 Ren, Q., Fu, C., Qiu, Q., Dai, S., Liu, Z., Masuda, T., Asai, S., Hagihala, M., Lee, S., Torri, S., Kamiyama, T., He, L., Tong, X., Felser, C., Singh, D.J., Zhu, T., Yang, J., Ma, J.: Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat. Commun. 11, 1 (2020). https://doi.org/10.1038/s41467-020-16913-2 Macheda, F., Barone, P., Mauri, F.: Electron–phonon interaction and longitudinal-transverse phonon splitting in doped semiconductors. Phys. Rev. Lett. 129, 185902 (2022). https://doi.org/10.1103/PhysRevLett.129.185902 Ehrenreich, H.: Screening effects in polar semiconductors. J. Phys. Chem. Solids 8, 130 (1959). https://doi.org/10.1016/0022-3697(59)90297-5 Chaves, A.S., Larson, D.T., Kaxiras, E., Antonelli, A.: Microscopic origin of the high thermoelectric figure of merit of n-doped SnSe. Phys. Rev. B 104, 115204 (2021). https://doi.org/10.1103/PhysRevB.104.115204 Chaves, A.S., Larson, D.T., Kaxiras, E., Antonelli, A.: Out-of-plane thermoelectric performance for p-doped GeSe. Phys. Rev. B 105, 205201 (2022). https://doi.org/10.1103/PhysRevB.105.205201 Radisavljevic, B., Kis, A.: Mobility engineering and a metal-insulator transition in monolayer MoS\(_2\). Nat. Mater. 12, 815 (2013). https://doi.org/10.1038/nmat3687 Li, S.-L., Tsukagoshi, K., Orgiu, E., Samorì, P.: Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118 (2016). https://doi.org/10.1039/C5CS00517E Bergmann, G.: Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1 (1984). https://doi.org/10.1016/0370-1573(84)90103-0 Lee, P.A., Stone, A.D.: Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622 (1985). https://doi.org/10.1103/PhysRevLett.55.1622 Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press (1997) Dewandre, A., Hellman, O., Bhattacharya, S., Romero, A.H., Madsen, G.K., Verstraete, M.J.: Two-step phase transition in SnSe and the origins of its high power factor from first principles. Phys. Rev. Lett. 117, 276601 (2016). https://doi.org/10.1103/PhysRevLett.117.276601 Gunlycke, D., White, C.T.: Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011). https://doi.org/10.1103/PhysRevLett.106.136806 Koenraad, P.M., Flatté, M.E.: Single dopants in semiconductors. Nat. Mater. 10, 91 (2011). https://doi.org/10.1038/nmat2940 Zheng, Y., Slade, T.J., Hu, L., Tan, X.Y., Luo, Y., Luo, Z.-Z., Xu, J., Yan, Q., Kanatzidis, M.G.: Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. (2021). https://doi.org/10.1039/D1CS00347J Brooks, H.: Theory of the electrical properties of germanium and silicon. In: Advances in Electronics and Electron Physics, vol. 7. Elsevier, pp. 85–182 (1955) Chattopadhyay, D., Queisser, H.J.: Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53, 745 (1981). https://doi.org/10.1103/RevModPhys.53.745 Moore, E.J.: Quantum-transport theories and multiple scattering in doped semiconductors. I. Formal theory. Phys. Rev. 160, 607 (1967). https://doi.org/10.1103/PhysRev.160.607 Papanikolaou, N., Zeller, R., Dederichs, P., Stefanou, N.: Lattice distortion in Cu-based dilute alloys: a first-principles study by the KKR Green-function method. Phys. Rev. B 55, 4157 (1997). https://doi.org/10.1103/PhysRevB.55.4157 Settels, A., Korhonen, T., Papanikolaou, N., Zeller, R., Dederichs, P.: Ab initio study of acceptor-donor complexes in silicon and germanium. Phys. Rev. Lett. 83, 4369 (1999). https://doi.org/10.1103/PhysRevLett.83.4369 Höhler, H., Atodiresei, N., Schroeder, K., Zeller, R., Dederichs, P.: Cd-vacancy and Cd-interstitial complexes in Si and Ge. Phys. Rev. B 70, 155313 (2004). https://doi.org/10.1103/PhysRevB.70.155313 Ebert, H., Koedderitzsch, D., Minar, J.: Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011). https://doi.org/10.1088/0034-4885/74/9/096501 Restrepo, O., Varga, K., Pantelides, S.: First-principles calculations of electron mobilities in silicon: phonon and coulomb scattering. Appl. Phys. Lett. 94, 212103 (2009). https://doi.org/10.1063/1.3147189 Lordi, V., Erhart, P., Åberg, D.: Charge carrier scattering by defects in semiconductors. Phys. Rev. B 81, 235204 (2010). https://doi.org/10.1103/PhysRevB.81.235204 Lu, I.-T., Zhou, J.-J., Bernardi, M.: Efficient ab initio calculations of electron-defect scattering and defect-limited carrier mobility. Phys. Rev. Mater. 3, 033804 (2019). https://doi.org/10.1103/PhysRevMaterials.3.033804 Lu, I.-T., Park, J., Zhou, J.-J., Bernardi, M.: Ab initio electron-defect interactions using Wannier functions. npj Comput. Mater. 6, 1 (2020). https://doi.org/10.1038/s41524-020-0284-y Fugallo, G., Lazzeri, M., Paulatto, L., Mauri, F.: Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430 (2013). https://doi.org/10.1103/PhysRevB.88.045430 Feng, T., Ruan, X.: Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016). https://doi.org/10.1103/PhysRevB.93.045202 Han, Z., Yang, X., Li, W., Feng, T., Ruan, X.: Fourphonon: an extension module to Shengbte for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 270, 108179 (2022). https://doi.org/10.1016/j.cpc.2021.108179 Garg, J., Bonini, N., Kozinsky, B., Marzari, N.: Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011). https://doi.org/10.1103/PhysRevLett.106.045901 Liao, B., Qiu, B., Zhou, J., Huberman, S., Esfarjani, K., Chen, G.: Significant reduction of lattice thermal conductivity by the electron–phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015). https://doi.org/10.1103/PhysRevLett.114.115901 Madsen, G.K., Singh, D.J.: Boltztrap. a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006). https://doi.org/10.1016/j.cpc.2006.03.007 Bardeen, J., Shockley, W.: Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72 (1950). https://doi.org/10.1103/PhysRev.80.72 Xi, J., Long, M., Tang, L., Wang, D., Shuai, Z.: First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348 (2012). https://doi.org/10.1039/C2NR30585B Xi, L., Pan, S., Li, X., Xu, Y., Ni, J., Sun, X., Yang, J., Luo, J., Xi, J., Zhu, W., et al.: Discovery of high-performance thermoelectric chalcogenides through reliable high-throughput material screening. J. Am. Chem. Soc. 140, 10785 (2018). https://doi.org/10.1021/jacs.8b04704 Ganose, A.M., Park, J., Faghaninia, A., Woods-Robinson, R., Persson, K.A., Jain, A.: Efficient calculation of carrier scattering rates from first principles. Nat. Commun. 12, 1 (2021). https://doi.org/10.1038/s41467-021-22440-5 Ma, J., Nissimagoudar, A.S., Li, W.: First-principles study of electron and hole mobilities of Si and GaAs. Phys. Rev. B 97, 045201 (2018). https://doi.org/10.1103/PhysRevB.97.045201 Giustino, F., Cohen, M.L., Louie, S.G.: Electron–phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007). https://doi.org/10.1103/PhysRevB.76.165108 Agapito, L.A., Bernardi, M.: Ab initio electron–phonon interactions using atomic orbital wave functions. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.235146 Samsonidze, G., Kozinsky, B.: Accelerated screening of thermoelectric materials by first-principles computations of electron–phonon scattering. Adv. Energy Mater. 8, 1800246 (2018). https://doi.org/10.1002/aenm.201800246 Deng, T., Wu, G., Sullivan, M.B., Wong, Z.M., Hippalgaonkar, K., Wang, J.-S., Yang, S.-W.: EPIC STAR: a reliable and efficient approach for phonon- and impurity-limited charge transport calculations. npj Comput. Mater. 6, 1 (2020). https://doi.org/10.1038/s41524-020-0316-7 Yao, M., Wang, Y., Li, X., Sheng, Y., Huo, H., Xi, L., Yang, J., Zhang, W.: Materials informatics platform with three dimensional structures, workflow and thermoelectric applications. Sci. Data 8, 1 (2021). https://doi.org/10.1038/s41597-021-01022-6 Engel, M., Marsman, M., Franchini, C., Kresse, G.: Electron-phonon interactions using the projector augmented-wave method and Wannier functions. Phys. Rev. B 101, 184302 (2020). https://doi.org/10.1103/PhysRevB.101.184302 Brouder, C., Panati, G., Calandra, M., Mourougane, C., Marzari, N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007). https://doi.org/10.1103/PhysRevLett.98.046402 Souza, I., Marzari, N., Vanderbilt, D.: Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001). https://doi.org/10.1103/PhysRevB.65.035109 Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. Courier Corporation, Berlin (2012) Chaves, A.S., Antonelli, A., Larson, D.T., Kaxiras, E.: Boosting the efficiency of ab initio electron–phonon coupling calculations through dual interpolation. Phys. Rev. B 102, 125116 (2020). https://doi.org/10.1103/PhysRevB.102.125116 Chadi, D.J., Cohen, M.L.: Special points in the Brillouin zone. Phys. Rev. B 8, 5747 (1973). https://doi.org/10.1103/PhysRevB.8.5747 Shankland, D.G.: Interpolation in k-space with functions of arbitrary smoothness. In: Computational Methods in Band Theory. Springer, pp. 362–367 (1971). https://doi.org/10.1007/978-1-4684-1890-328 Koelling, D., Wood, J.: On the interpolation of eigenvalues and a resultant integration scheme. J. Comput. Phys. 67, 253 (1986). https://doi.org/10.1016/0021-9991(86)90261-5 Pickett, W.E., Krakauer, H., Allen, P.B.: Smooth Fourier interpolation of periodic functions. Phys. Rev. B 38, 2721 (1988). https://doi.org/10.1103/PhysRevB.38.2721 Togo, A., Chaput, L., Tanaka, I.: Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306 Carrete, J., Mingo, N., Curtarolo, S.: Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett. 105, 101907 (2014). https://doi.org/10.1063/1.4895770 Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011). https://doi.org/10.1038/nature09996 Pei, Y., Wang, H., Snyder, G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012). https://doi.org/10.1002/adma.201202919 Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q., Uher, C.: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg\(_2\)Si\(_{1-x}\)Sn\(_x\) solid solutions. Phys. Rev. Lett. 108, 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601 Dehkordi, A.M., Zebarjadi, M., He, J., Tritt, T.M.: Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R. Rep. 97, 1 (2015). https://doi.org/10.1016/j.mser.2015.08.001 Parker, D.S., May, A.F., Singh, D.J.: Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe\(_2\). Phys. Rev. Appl. 3, 064003 (2015). https://doi.org/10.1103/PhysRevApplied.3.064003 Morelli, D., Jovovic, V., Heremans, J.: Intrinsically minimal thermal conductivity in cubic I–V–VI\(_2\) semiconductors. Phys. Rev. Lett. 101, 035901 (2008). https://doi.org/10.1103/PhysRevLett.101.035901 He, J., Amsler, M., Xia, Y., Naghavi, S.S., Hegde, V.I., Hao, S., Goedecker, S., Ozoliņš, V., Wolverton, C.: Ultralow thermal conductivity in full Heusler semiconductors. Phys. Rev. Lett. 117, 046602 (2016). https://doi.org/10.1103/PhysRevLett.117.046602 González-Romero, R.L., Antonelli, A., Chaves, A.S., Meléndez, J.J.: Ultralow and anisotropic thermal conductivity in semiconductor As\(_2\)Se\(_3\). Phys. Chem. Chem. Phys. 20, 1809 (2018). https://doi.org/10.1039/C7CP07242B Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008). https://doi.org/10.1038/nature06381 Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A., III., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008). https://doi.org/10.1038/nature06458 Kanatzidis, M.G.: Nanostructured thermoelectrics: the new paradigm? Chem. Mater. 22, 648 (2009). https://doi.org/10.1021/cm902195j Zhao, L.-D., Hao, S., Lo, S.-H., Wu, C.-I., Zhou, X., Lee, Y., Li, H., Biswas, K., Hogan, T.P., Uher, C., Wolverton, C., Dravid, V.P., G, K.M.: High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J. Am. Chem. Soc. 135, 7364 (2013). https://doi.org/10.1021/ja403134b McKinney, R.W., Gorai, P., Stevanović, V., Toberer, E.S.: Search for new thermoelectric materials with low Lorenz number. J. Mater. Chem. A 5, 17302 (2017). https://doi.org/10.1039/C7TA04332E Mahan, G., Sofo, J.: The best thermoelectric. Proc. Natl. Acad. Sci. 93, 7436 (1996). https://doi.org/10.1073/pnas.93.15.7436 Baranowski, L.L., Jeffrey Snyder, G., Toberer, E.S.: Effective thermal conductivity in thermoelectric materials. J. Appl. Phys. 113, 204904 (2013). https://doi.org/10.1063/1.4807314 Ortiz, B.R., Gorai, P., Krishna, L., Mow, R., Lopez, A., McKinney, R., Stevanović, V., Toberer, E.S.: Potential for high thermoelectric performance in n-type Zintl compounds: a case study of Ba doped KAlSb\(_4\). J. Mater. Chem. A 5, 4036 (2017). https://doi.org/10.1039/C6TA09532A Putatunda, A., Singh, D.J.: Lorenz number in relation to estimates based on the Seebeck coefficient. Mater. Today Phys. 8, 49 (2019). https://doi.org/10.1016/j.mtphys.2019.01.001 He, J., Tritt, T.M.: Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017). https://doi.org/10.1126/science.aak9997 Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012). https://doi.org/10.1038/nature11439 Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Li, Q., Uher, C., Day, T., Snyder, G.J.: Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422 (2012). https://doi.org/10.1038/nmat3273 Fu, T., Yue, X., Wu, H., Fu, C., Zhu, T., Liu, X., Hu, L., Ying, P., He, J., Zhao, X.: Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT \(>\) 2 by multi-functional alloying. J. Mater. 2, 141 (2016). https://doi.org/10.1016/j.jmat.2016.05.005 Olvera, A., Moroz, N., Sahoo, P., Ren, P., Bailey, T., Page, A., Uher, C., Poudeu, P.: Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu\(_2\)Se. Energy Environ. Sci. 10, 1668 (2017). https://doi.org/10.1039/C7EE01193H Cheng, Y., Yang, J., Jiang, Q., He, D., He, J., Luo, Y., Zhang, D., Zhou, Z., Ren, Y., Xin, J.: New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance. J. Mater. Chem. A 5, 5163 (2017). https://doi.org/10.1039/C6TA10827J Ma, N., Li, Y.-Y., Chen, L., Wu, L.-M.: \(\alpha\)-CsCu\(_5\)Se\(_3\): discovery of a low-cost bulk selenide with high thermoelectric performance. J. Am. Chem. Soc. 142, 5293 (2020). https://doi.org/10.1021/jacs.0c00062 Roychowdhury, S., Ghosh, T., Arora, R., Samanta, M., Xie, L., Singh, N.K., Soni, A., He, J., Waghmare, U.V., Biswas, K.: Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe\(_2\). Science 371, 722 (2021). https://doi.org/10.1126/science.abb3517 Terasaki, I., Sasago, Y., Uchinokura, K.: Large thermoelectric power in NaCo\(_2\)O\(_4\) single crystals. Phys. Rev. B 56, R12685 (1997). https://doi.org/10.1103/PhysRevB.56.R12685 Rhyee, J.-S., Lee, K.H., Lee, S.M., Cho, E., Kim, S.I., Lee, E., Kwon, Y.S., Shim, J.H., Kotliar, G.: Peierls distortion as a route to high thermoelectric performance in In\(_4\)Se\(_{3-\delta }\) crystals. Nature 459, 965 (2009). https://doi.org/10.1038/nature08088 Ohta, H., Kim, S.W., Kaneki, S., Yamamoto, A., Hashizume, T.: High thermoelectric power factor of high-mobility 2D electron gas. Adv. Sci. 5, 1700696 (2018). https://doi.org/10.1002/advs.201700696 Cheng, L., Zhang, C., Liu, Y.: The optimal electronic structure for high-mobility 2D semiconductors: exceptionally high hole mobility in 2D antimony. J. Am. Chem. Soc. 141, 16296 (2019). https://doi.org/10.1021/jacs.9b05923 Li, Z., Xiao, C., Xie, Y.: Layered thermoelectric materials: structure, bonding, and performance mechanisms. Appl. Phys. Rev. 9, 011303 (2022). https://doi.org/10.1063/5.0074489 Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014). https://doi.org/10.1038/nature13184 Zhao, L.-D., Tan, G., Hao, S., He, J., Pei, Y., Chi, H., Wang, H., Gong, S., Xu, H., Dravid, V.P., et al.: Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141 (2016). https://doi.org/10.1126/science.aad3749 Chang, C., Wu, M., He, D., Pei, Y., Wu, C.-F., Wu, X., Yu, H., Zhu, F., Wang, K., Chen, Y., et al.: 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778 (2018). https://doi.org/10.1126/science.aaq1479 Ding, G., Gao, G., Yao, K.: High-efficient thermoelectric materials: the case of orthorhombic IV–VI compounds. Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep09567 Guo, R., Wang, X., Kuang, Y., Huang, B.: First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Phys. Rev. B 92, 115202 (2015). https://doi.org/10.1103/PhysRevB.92.115202 Skelton, J.M., Burton, L.A., Parker, S.C., Walsh, A., Kim, C.-E., Soon, A., Buckeridge, J., Sokol, A.A., Catlow, C.R.A., Togo, A., et al.: Anharmonicity in the high-temperature Cmcm phase of SnSe: soft modes and three-phonon interactions. Phys. Rev. Lett. 117, 075502 (2016). https://doi.org/10.1103/PhysRevLett.117.075502 Li, S., Tong, Z., Bao, H.: Resolving different scattering effects on the thermal and electrical transport in doped SnSe. J. Appl. Phys. 126, 025111 (2019). https://doi.org/10.1063/1.5098340 Aseginolaza, U., Bianco, R., Monacelli, L., Paulatto, L., Calandra, M., Mauri, F., Bergara, A., Errea, I.: Phonon collapse and second-order phase transition in thermoelectric SnSe. Phys. Rev. Lett. 122, 075901 (2019). https://doi.org/10.1103/PhysRevLett.122.075901 Zhang, X., Shen, J., Lin, S., Li, J., Chen, Z., Li, W., Pei, Y.: Thermoelectric properties of GeSe. J. Mater. 2, 331 (2016). https://doi.org/10.1016/j.jmat.2016.09.001 Shaabani, L., Aminorroaya-Yamini, S., Byrnes, J., Akbar Nezhad, A., Blake, G.R.: Thermoelectric performance of Na-doped GeSe. ACS Omega 2, 9192 (2017). https://doi.org/10.1021/acsomega.7b01364 Hao, S., Shi, F., Dravid, V.P., Kanatzidis, M.G., Wolverton, C.: Computational prediction of high thermoelectric performance in hole doped layered GeSe. Chem. Mater. 28, 3218 (2016) Roychowdhury, S., Samanta, M., Perumal, S., Biswas, K.: Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermal conductivity. Chem. Mater. 30, 5799 (2018). https://doi.org/10.1021/acs.chemmater.8b02676 Yuan, K., Sun, Z., Zhang, X., Tang, D.: Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-45949-8 Asen-Palmer, M., Bartkowski, K., Gmelin, E., Cardona, M., Zhernov, A., Inyushkin, A., Taldenkov, A., Ozhogin, V., Itoh, K.M., Haller, E.: Thermal conductivity of germanium crystals with different isotopic compositions. Phys. Rev. B 56, 9431 (1997). https://doi.org/10.1103/PhysRevB.56.9431 Omini, M., Sparavigna, A.: An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys. B 212, 101 (1995). https://doi.org/10.1016/0921-4526(95)00016-3 Simoncelli, M., Marzari, N., Mauri, F.: Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809 (2019). https://doi.org/10.1038/s41567-019-0520-x Zhou, C., Lee, Y.K., Yu, Y., Byun, S., Luo, Z.-Z., Lee, H., Ge, B., Lee, Y.-L., Chen, X., Lee, J.Y., et al.: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378 (2021). https://doi.org/10.1038/s41563-021-01064-6 Ibrahim, D., Vaney, J.-B., Sassi, S., Candolfi, C., Ohorodniichuk, V., Levinsky, P., Semprimoschnig, C., Dauscher, A., Lenoir, B.: Reinvestigation of the thermal properties of single-crystalline SnSe. Appl. Phys. Lett. 110, 032103 (2017). https://doi.org/10.1063/1.4974348 Sarkar, D., Ghosh, T., Roychowdhury, S., Arora, R., Sajan, S., Sheet, G., Waghmare, U.V., Biswas, K.: Ferroelectric instability induced ultralow thermal conductivity and high thermoelectric performance in rhombohedral p-type GeSe crystal. J. Am. Chem. Soc. 142, 12237 (2020). https://doi.org/10.1021/jacs.0c03696 Xia, Y.: Revisiting lattice thermal transport in PbTe: the crucial role of quartic anharmonicity. Appl. Phys. Lett. 113, 073901 (2018). https://doi.org/10.1063/1.5040887 Wei, P.-C., Bhattacharya, S., He, J., Neeleshwar, S., Podila, R., Chen, Y., Rao, A.: The intrinsic thermal conductivity of SnSe. Nature 539, E1 (2016). https://doi.org/10.1038/nature19832 Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: The intrinsic thermal conductivity of SnSe: Reply. Nature 539, E2 (2016). https://doi.org/10.1038/nature19833 Wu, D., Wu, L., He, D., Zhao, L.-D., Li, W., Wu, M., Jin, M., Xu, J., Jiang, J., Huang, L., et al.: Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy 35, 321 (2017). https://doi.org/10.1016/j.nanoen.2017.04.004 Lee, Y.K., Luo, Z., Cho, S.P., Kanatzidis, M.G., Chung, I.: Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3, 719 (2019). https://doi.org/10.1016/j.joule.2019.01.001