Semiautomatic approach for land cover classification: a remote sensing study for arid climate in southeastern Tunisia

Moncef Bouaziz1, Stefanie Eisold2, Emna Guermazi3
1Department of Geology, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
2Faculty of Environmental Sciences, Institute of Geography, TU-Dresden, Helmholtzstr. 10, 1609, Dresden, Germany
3National School of Engineers, University of Sfax, Sfax, Tunisia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adam E, Mutanga O, Odindi J, Abdel-Rahman EM (2014) Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int J Remote Sens 35:3440–3458. doi: 10.1080/01431161.2014.903435

Bishop YMM, Fienberg SE, Holland PW et al (1977) Book review: discrete multivariate analysis: theory and practice. Appl Psychol Meas 1:297–306. doi: 10.1177/014662167700100218

Bouaziz M, Wijaya A, Gloaguen R (2011) Remote gully erosion mapping using ASTER data and geomorphologic analysis in the main Ethiopian rift. Geo Spat Inf Sci 14:246–254. doi: 10.1007/s11806-011-0565-1

Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167. doi: 10.1023/A:1009715923555

Castillejo-González IL, López-Granados F, García-Ferrer A et al (2009) Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Comput Electron Agric 68:207–215. doi: 10.1016/j.compag.2009.06.004

Felde GW, Anderson GP, Cooley TW, Matthew MW, Adler-Golden SM, Berk A, Lee J (2003) Analysis of hyperion data with the FLAASH atmospheric correction algorithm. IEEE Trans Geosci Remote Sen 3:90–92

Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201

Gong P, Wang J, Yu L et al (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34:2607–2654. doi: 10.1080/01431161.2012.748992

Guermazi E, Bouaziz M, Zairi M (2016) Water irrigation management using remote sensing techniques: a case study in Central Tunisia. Environ Earth Sci 75:202. doi: 10.1007/s12665-015-4804-x

Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245

Jensen JR (2005) Thematic map accuracy assessment. In: Introductory digital image processing: a remote sensing perspective, 3rd edn. Geographic Information Science Series. Prentice Hall, Upper Saddle River, pp 495–515

Jia K, Liang S, Zhang N et al (2014) Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J Photogramm Remote Sens 93:49–55. doi: 10.1016/j.isprsjprs.2014.04.004

Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf 11:352–359. doi: 10.1016/j.jag.2009.06.002

Kumar Y, Sahoo G (2012) Analysis of parametric & non parametric classifiers for classification technique using WEKA. Int J Inf Technol Comput Sci 4:43–49. doi: 10.5815/ijitcs.2012.07.06

Lu D, Mausel P, Batistella M, Moran E (2004) Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogramm Eng Remote Sens 70:723–731. doi: 10.14358/PERS.70.6.723

Manandhar R, Odeh IOA, Ancev T (2009) Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens 1:330–344. doi: 10.3390/rs1030330

Mantero P, Moser G, Serpico S (2005) Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans Geosci Remote Sens 43:559–570

Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66:247–259. doi: 10.1016/j.isprsjprs.2010.11.001

Myint SW, Gober P, Brazel A et al (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115:1145–1161. doi: 10.1016/j.rse.2010.12.017

Pal M, Mather PM (2004) Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener Comput Syst 20:1215–1225. doi: 10.1016/j.future.2003.11.011

Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26:1007–1011. doi: 10.1080/01431160512331314083

Paneque-Gálvez J, Mas J-F, Moré G et al (2013) Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int J Appl Earth Obs Geoinf 23:372–383. doi: 10.1016/j.jag.2012.10.007

Richards JA (1992) Remote sensing digital image analysis. Springer, Cambridge

Richards JA, Jia X (1999) Remote sensing digital image analysis, 3rd edn. Springer, Berlin

Senf C, Leitão PJ, Pflugmacher D et al (2015) Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens Environ 156:527–536. doi: 10.1016/j.rse.2014.10.018

Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach. Int J Remote Sens 20:1461–1486

Srivastava PK, Han D, Rico-Ramirez MA et al (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50:1250–1265. doi: 10.1016/j.asr.2012.06.032

Tompkins S, Mustard JF, Forsyth DW (1986) Optimization of endmembers for spectral mixture analysis. Remote Sens Environ 59:472–489. doi: 10.1016/S0034-4257(96)00122-8

Vapnik V (1982) Estimation of dependences based on empirical data. Springer, New York

Wang L, Zhu J, Zou H (2006) The doubly regularized support vector machine. Stat Sin 16:589–615

Wijaya A, Marpu PR, Gloaguen R (2008) Geostatistics texture classification of tropical rainforest in Indonesia. In: Stein S, Shi W, Bijker W (eds) Quality aspects in spatial data mining. CRC, Boca Raton, pp 199–210

Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98:317–328. doi: 10.1016/j.rse.2005.08.006