Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nén bán rắn hợp kim nhôm 2A14 với tỷ lệ thể rắn cao: cơ học lưu biến, phương trình cấu trúc và vi cấu trúc
Tóm tắt
Trong nghiên cứu này, quá trình nén bán rắn của hợp kim nhôm 2A14 đã được thực hiện trên thiết bị mô phỏng nhiệt lý thuyết Gleeble1500D để điều tra hành vi lưu biến của hợp kim 2A14 ở tỷ lệ thể rắn cao trong trạng thái bán rắn. Mục tiêu chính của nghiên cứu là thiết lập phương trình cấu trúc phù hợp để phục vụ cho quá trình mô phỏng và thực tiến quá trình tạo hình thixoforging của hợp kim 2A14. Một mục đích khác là điều tra ảnh hưởng của các thông số biến dạng nhiệt đến vi cấu trúc của hợp kim 2A14. Độ nhớt biểu kiến của hợp kim 2A14 bán rắn với tỷ lệ thể rắn cao được xác định phụ thuộc vào tốc độ cắt tương đương. Phương trình cấu trúc cho hợp kim nhôm 2A14 ở biến dạng thực dưới 0.2 đã được thiết lập. Tăng nhiệt độ nén hoặc tốc độ biến dạng có lợi cho quá trình biến dạng và tinh chế hạt trong vùng biến dạng cứng, nhưng đồng thời cũng sẽ làm gia tăng sự tập hợp của các vi khoang trong vùng chuyển tiếp thành các vi crack và tạo thành các macro-crack. Sự không ổn định nén vĩ mô ở các biến dạng thực trên 0.2 đã được thảo luận, chủ yếu do các dải cắt loãng tạo ra trong khu vực định hình biến dạng và độ nhạy nứt nhiệt cao hơn của hợp kim 2A14.
Từ khóa
#hợp kim nhôm 2A14 #nén bán rắn #lưu biến #phương trình cấu trúc #vi cấu trúcTài liệu tham khảo
Spencer DB, Mehrabian R, Flemings MC (1972) Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Mater Trans B 3:1925–1932. https://doi.org/10.1007/BF02642580
Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metall Trans A 22:957–981. https://doi.org/10.1007/BF02661090
Czerwinski F (2018) Thermomechanical processing of metal feedstock for semisolid forming: a review. Metall Mater Trans B 49:3220–3257. https://doi.org/10.1007/s11663-018-1387-4
Pola A, Tocci M, Kapranos P (2018) Microstructure and properties of semi-solid aluminum alloys: a literature review. Metals. https://doi.org/10.3390/met8030181
Su TC, O’Sullivan C, Yasuda H, Gourlay CM (2020) Rheological transitions in semi-solid alloys: In-situ imaging and LBM-DEM simulations. Acta Mater 191:24–42. https://doi.org/10.1016/j.actamat.2020.03.011
Dumanić I, Jozić S, Bajić D (2021) Simulation of real image microstructural model of semi-solid aluminium alloy using a coupled eulerian-lagrangian approach. Int J Met. https://doi.org/10.1007/s40962-021-00689-2
Sheykh-jaberi F, Cockcroft SL, Maijer DM, Phillion AB (2020) Meso-scale modelling of semi-solid deformation in aluminum foundry alloys: Effects of feeding and microstructure on hot tearing susceptibility. J Mater Process Technol 279:116551. https://doi.org/10.1016/j.jmatprotec.2019.116551
Qu W, Li D, Zhang F, Luo M, Hu X, Zhang Y (2020) Multiphase modelling of the transient flow for Sn-15Pb and 357.0 alloys in semi-solid die casting process. J Mater Process Technol 278:116534
Ma Z, Zhang H, Zhang X et al (2019) Rheological behaviour of partially solidified A356 alloy: experimental study and constitutive modelling. J Alloys Compd 803:1141–1154. https://doi.org/10.1016/j.jallcom.2019.06.345
Lashkari O, Ghomashchi R (2007) Rheological behavior of semi-solid Al–Si alloys: effect of morphology. Mater Sci Eng A 454–455:30–36. https://doi.org/10.1016/j.msea.2007.01.003
Lashkari O, Ghomashchi R (2008) Deformation behavior of semi-solid A356 Al–Si alloy at low shear rates: effect of fraction solid. Mater Sci Eng A 486:333–340. https://doi.org/10.1016/j.msea.2007.09.009
Lashkari O, Ghomashchi R, Ajersch F (2007) Deformation behavior of semi-solid A356 Al–Si alloy at low shear rates: the effect of sample size. Mater Sci Eng A 444:198–205. https://doi.org/10.1016/j.msea.2006.08.067
Li H, Cao M, Niu L et al (2021) Establishment of macro-micro constitutive model and deformation mechanism of semi-solid Al6061. J Alloys Compd 854:157124. https://doi.org/10.1016/j.jallcom.2020.157124
Sheykh-jaberi F, Cockcroft SL, Maijer DM, Phillion AB (2019) Comparison of the semi-solid constitutive behaviour of A356 and B206 aluminum foundry alloys. J Mater Process Technol 266:37–45. https://doi.org/10.1016/j.jmatprotec.2018.10.029
Chen G, Lin F, Yao S et al (2016) Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. J Alloys Compd 674:26–36. https://doi.org/10.1016/j.jallcom.2016.02.254
Altuhafi FN, O’Sullivan C, Sammonds P et al (2021) Triaxial compression on semi-solid alloys. Metall Mater Trans A 52:2010–2023. https://doi.org/10.1007/s11661-021-06213-9
Giraud E, Suéry M, Coret M (2012) High temperature compression behavior of the solid phase resulting from drained compression of a semi-solid 6061 alloy. Mater Sci Eng A 532:37–43. https://doi.org/10.1016/j.msea.2011.10.059
Wang B, Yi Y, He H, Huang S (2021) Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy. J Alloys Compd 871:159459. https://doi.org/10.1016/j.jallcom.2021.159459
Wang Q, He X, Deng Y et al (2021) Experimental study of grain structures evolution and constitutive model of isothermal deformed 2A14 aluminum alloy. J Mater Res Technol 12:2348–2367. https://doi.org/10.1016/j.jmrt.2021.04.025
Tzimas E, Zavaliangos A (1999) Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Mater 47:517–528. https://doi.org/10.1016/S1359-6454(98)00356-5
Chen Q, Chen G, Ji X et al (2017) Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation. J Mater Process Technol 246:167–175. https://doi.org/10.1016/j.jmatprotec.2017.03.023
Shi L, Yan J, Peng B, Han Y (2011) Deformation behavior of semi-solid Zn–Al alloy filler metal during compression. Mater Sci Eng A 528:7084–7092. https://doi.org/10.1016/j.msea.2011.05.059
Zhang JX, Sun HY, Li J, Liu WC (2019) Effect of precipitation state on recrystallization texture of continuous cast AA 2037 aluminum alloy. Mater Sci Eng A 754:491–501. https://doi.org/10.1016/j.msea.2019.03.107
Chen X, Peng Y, Chen C et al (2019) Mechanical behavior and texture evolution of aluminum alloys subjected to strain path changes: experiments and modeling. Mater Sci Eng A 757:32–41. https://doi.org/10.1016/j.msea.2019.04.091
Wang X, Shi T, Jiang Z et al (2019) Relationship among grain size, texture and mechanical properties of aluminums with different particle distributions. Mater Sci Eng A 753:122–134. https://doi.org/10.1016/j.msea.2019.03.034
Kirkwood DH, Sellars CM, Boyed L (1992) Thixotropic materials
Dienes GJ, Klemm HF (1946) Theory and application of the parallel plate plastometer. J Appl Phys 17:458–471. https://doi.org/10.1063/1.1707739
Laxmanan V, Flemings MC (1980) Deformation of semi-solid Sn-15 Pct Pb alloy. Metall Trans A 11:1927–1937. https://doi.org/10.1007/BF02655112
Gebelin JC, Suery M, Favier D (1999) Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys. Mater Sci Eng A 272:134–144. https://doi.org/10.1016/S0921-5093(99)00467-0
Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14:1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0
Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22–32. https://doi.org/10.1063/1.1707363
Meshkabadi R, Pouyafar V, Javdani A, Faraji G (2017) An enhanced steady-state constitutive model for semi-solid forming of Al7075 based on cross model. Metall Mater Trans A 48:4275–4285. https://doi.org/10.1007/s11661-017-4192-9
Xu Y, Chen C, Jia J et al (2018) Constitutive behavior of a SIMA processed magnesium alloy by employing repetitive upsetting-extrusion (RUE). J Alloys Compd 748:694–705. https://doi.org/10.1016/j.jallcom.2018.03.205
Wang Q, Zhou R, Li Y, Geng B (2020) Characteristics of dynamic recrystallization in semi-solid CuSn10P1 alloy during hot deformation. Mater Charact 159:109996. https://doi.org/10.1016/j.matchar.2019.109996
Ferreira JPG, Lourençato LA, Roca AS, Fals HDC (2020) The influence of strontium on microstructural and rheological behavior of the semi-solid A380 aluminum alloy. Metall Mater Trans A 51:6421–6431. https://doi.org/10.1007/s11661-020-05996-7
Geng S, Jiang P, Shao X et al (2018) Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: a phase-field study. Scr Mater 150:120–124. https://doi.org/10.1016/j.scriptamat.2018.03.013
Modigell M, Pola A, Tocci M (2018) Rheological characterization of semi-solid metals: a review. Metals. https://doi.org/10.3390/met8040245
Gourlay CM, Dahle AK (2007) Dilatant shear bands in solidifying metals. Nature 445:70–73. https://doi.org/10.1038/nature05426
Kareh KM, O’Sullivan C, Nagira T et al (2017) Dilatancy in semi-solid steels at high solid fraction. Acta Mater 125:187–195. https://doi.org/10.1016/j.actamat.2016.11.066
