Semi-smooth Newton methods for the Signorini problem

Institute of Mathematics, Czech Academy of Sciences - Tập 53 Số 5 - Trang 455-468 - 2008
Kazufumi Ito1, Karl Kunisch2
1Department of Mathematics North Carolina State University Raleigh, North Carolina 27695-8205 USA
2Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, A-8010, Graz, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. Bergounioux, M. Haddou, M. Hintermüller, K. Kunisch: A comparison of a Moreau-Yosida based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000), 495–521.

R. Glowinski: Numerical Methods for Nonlinear Variational Problems. Springer, New York, 1984.

R. Glowinski, J.-L. Lions, T. Trémolières: Analyse numérique des inéquations variationnelles, Vol. 1. Dunod, Paris, 1976. (In French.)

P. Grisvard: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

P. Grisvard: Singularities in Boundary Value Problems. Recherches en mathématiques appliqués 22. Masson, Paris, 1992.

M. Hintermüller, K. Ito, K. Kunisch: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003), 865–888.

M. Hintermüller, K. Kunisch: Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006), 1198–1221.

K. Ito, K. Kunisch: Semi-smooth Newton methods for variational inequalities of the first kind. M2AN, Math. Model. Numer. Anal. 37 (2003), 41–62.

M. Ulbrich: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003), 805–841.