Semi-intrusive uncertainty propagation for multiscale models
Tóm tắt
Từ khóa
Tài liệu tham khảo
WE, 2011
Groen, 2014, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng., 16, 34, 10.1109/MCSE.2013.47
Hoekstra, 2014, Multiscale modelling and simulation: a position paper, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130377, 10.1098/rsta.2013.0377
Karabasov, 2014, Multiscale modelling: approaches and challenges, Philos. Trans. Ser. A Math. Phys. Eng. Sci., 10.1098/rsta.2013.0390
Sloot, 2009, Multi-scale modelling in computational biomedicine, Brief. Bioinform., 11, 142, 10.1093/bib/bbp038
Alowayyed, 2017, Multiscale computing in the exascale era, J. Comput. Sci., 10.1016/j.jocs.2017.07.004
Johnstone, 2015, Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models?, J. Mol. Cell. Cardiol., 96, 49, 10.1016/j.yjmcc.2015.11.018
Maître, 2010
Smith, 2013, vol. 12
Wan, 2005, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 617, 10.1016/j.jcp.2005.03.023
Xiu, 2009, Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys., 5, 242
Wang, 2015, Gaussian process regression with multiple response variables, Chemom. Intell. Lab. Syst., 142, 159, 10.1016/j.chemolab.2015.01.016
Liu, 2016, Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model, Sci. Rep., 6, 31303, 10.1038/srep31303
Zhan, 2017, Prediction of thermal boundary resistance by the machine learning method, Sci. Rep., 7, 7109, 10.1038/s41598-017-07150-7
Oyebamiji, 2017, Gaussian process emulation of an individual-based model simulation of microbial communities, J. Comput. Sci., 22, 69, 10.1016/j.jocs.2017.08.006
Gerritsma, 2010, Time-dependent generalized polynomial chaos, J. Comput. Phys., 229, 8333, 10.1016/j.jcp.2010.07.020
Archibald, 2012, Characterizing the elements of Earth's radiative budget: applying uncertainty quantification to the CESM, Proc. Comput. Sci., 9, 1014, 10.1016/j.procs.2012.04.109
Feinberg, 2015, Chaospy: an open source tool for designing methods of uncertainty quantification, J. Comput. Sci., 11, 46, 10.1016/j.jocs.2015.08.008
Owen, 2017, Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators, SIAM/ASA J. Uncertain. Quant., 5, 403, 10.1137/15M1046812
Chopard, 2011, A framework for multiscale and multiscience modeling and numerical simulations, 2, 10.1007/978-3-642-21341-0_2
Borgdorff, 2013, Foundations of distributed multiscale computing: formalization, specification, and analysis, J. Parallel Distrib. Comput., 73, 465, 10.1016/j.jpdc.2012.12.011
Borgdorff, 2014, Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, J. Comput. Sci., 5, 719, 10.1016/j.jocs.2014.04.004
Borgdorff, 2014, Performance of distributed multiscale simulations, Philos. Trans. R. Soc. A, 372, 20130407, 10.1098/rsta.2013.0407
Chopard, 2014, A framework for multi-scale modelling, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130378, 10.1098/rsta.2013.0378
Hoekstra, 2007, Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map, 922
Efron, 1993, 57
Butler, 2013, Propagation of uncertainties using improved surrogate models, SIAM/ASA J. Uncertain. Quant., 1, 164, 10.1137/120888399
Nikishova, 2018, Semi-intrusive multiscale metamodeling uncertainty quantification with application to a model of in-stent restenosis, Philos. Trans. A
Deb, 2001, Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190, 6359, 10.1016/S0045-7825(01)00237-7
Pasini, 2013, Polynomial chaos based uncertainty quantification in hamiltonian and chaotic systems, 52nd IEEE Conference on Decision and Control, 1113, 10.1109/CDC.2013.6760031
Gorodetsky, 2016, Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation, SIAM/ASA J. Uncertain. Quant., 796, 10.1137/15M1017119
Jones, 2001
Pedregosa, 2011, Scikit-learn: machine learning in python, J. Mach. Learn. Res., 12, 2825
Pearson, 1993, Complex patterns in a simple system, Science (New York, N.Y.), 261, 189, 10.1126/science.261.5118.189
Har-shemesh, 2016, Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model, J. Stat. Mech.: Theory Exp., 043301, 10.1088/1742-5468/2016/04/043301
Tchébichev, 1867, Sur les valeurs moyennes, Matematicheskii Sbornik, 2, 1