Semi-intrusive uncertainty propagation for multiscale models

Journal of Computational Science - Tập 35 - Trang 80-90 - 2019
Anna Nikishova1, Alfons G. Hoekstra1,2
1Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
2ITMO University, Saint Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

WE, 2011

Groen, 2014, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng., 16, 34, 10.1109/MCSE.2013.47

Hoekstra, 2014, Multiscale modelling and simulation: a position paper, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130377, 10.1098/rsta.2013.0377

Karabasov, 2014, Multiscale modelling: approaches and challenges, Philos. Trans. Ser. A Math. Phys. Eng. Sci., 10.1098/rsta.2013.0390

Sloot, 2009, Multi-scale modelling in computational biomedicine, Brief. Bioinform., 11, 142, 10.1093/bib/bbp038

Alowayyed, 2017, Multiscale computing in the exascale era, J. Comput. Sci., 10.1016/j.jocs.2017.07.004

Johnstone, 2015, Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models?, J. Mol. Cell. Cardiol., 96, 49, 10.1016/j.yjmcc.2015.11.018

Maître, 2010

Smith, 2013, vol. 12

Wan, 2005, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 617, 10.1016/j.jcp.2005.03.023

Xiu, 2009, Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys., 5, 242

Wang, 2015, Gaussian process regression with multiple response variables, Chemom. Intell. Lab. Syst., 142, 159, 10.1016/j.chemolab.2015.01.016

Liu, 2016, Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model, Sci. Rep., 6, 31303, 10.1038/srep31303

Zhan, 2017, Prediction of thermal boundary resistance by the machine learning method, Sci. Rep., 7, 7109, 10.1038/s41598-017-07150-7

Oyebamiji, 2017, Gaussian process emulation of an individual-based model simulation of microbial communities, J. Comput. Sci., 22, 69, 10.1016/j.jocs.2017.08.006

Gerritsma, 2010, Time-dependent generalized polynomial chaos, J. Comput. Phys., 229, 8333, 10.1016/j.jcp.2010.07.020

Archibald, 2012, Characterizing the elements of Earth's radiative budget: applying uncertainty quantification to the CESM, Proc. Comput. Sci., 9, 1014, 10.1016/j.procs.2012.04.109

Feinberg, 2015, Chaospy: an open source tool for designing methods of uncertainty quantification, J. Comput. Sci., 11, 46, 10.1016/j.jocs.2015.08.008

Owen, 2017, Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators, SIAM/ASA J. Uncertain. Quant., 5, 403, 10.1137/15M1046812

Chopard, 2011, A framework for multiscale and multiscience modeling and numerical simulations, 2, 10.1007/978-3-642-21341-0_2

Borgdorff, 2013, Foundations of distributed multiscale computing: formalization, specification, and analysis, J. Parallel Distrib. Comput., 73, 465, 10.1016/j.jpdc.2012.12.011

Borgdorff, 2014, Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, J. Comput. Sci., 5, 719, 10.1016/j.jocs.2014.04.004

Borgdorff, 2014, Performance of distributed multiscale simulations, Philos. Trans. R. Soc. A, 372, 20130407, 10.1098/rsta.2013.0407

Chopard, 2014, A framework for multi-scale modelling, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130378, 10.1098/rsta.2013.0378

Hoekstra, 2007, Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map, 922

Efron, 1993, 57

Butler, 2013, Propagation of uncertainties using improved surrogate models, SIAM/ASA J. Uncertain. Quant., 1, 164, 10.1137/120888399

Nikishova, 2018, Semi-intrusive multiscale metamodeling uncertainty quantification with application to a model of in-stent restenosis, Philos. Trans. A

Deb, 2001, Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190, 6359, 10.1016/S0045-7825(01)00237-7

Pasini, 2013, Polynomial chaos based uncertainty quantification in hamiltonian and chaotic systems, 52nd IEEE Conference on Decision and Control, 1113, 10.1109/CDC.2013.6760031

Gorodetsky, 2016, Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation, SIAM/ASA J. Uncertain. Quant., 796, 10.1137/15M1017119

Jones, 2001

Pedregosa, 2011, Scikit-learn: machine learning in python, J. Mach. Learn. Res., 12, 2825

Pearson, 1993, Complex patterns in a simple system, Science (New York, N.Y.), 261, 189, 10.1126/science.261.5118.189

Har-shemesh, 2016, Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model, J. Stat. Mech.: Theory Exp., 043301, 10.1088/1742-5468/2016/04/043301

Tchébichev, 1867, Sur les valeurs moyennes, Matematicheskii Sbornik, 2, 1