Semi-infinite quadratic programming
Tóm tắt
A method is presented for minimizing a definite quadratic function under an infinite number of linear inequality restrictions. Special features of the method are that it generates a sequence of feasible solutions and a sequence of basic solutions simultaneously and that it has very favourable properties concerning numerical stability.
Tài liệu tham khảo
Chand, R., Haug, E. J., Rim, K.: Analysis of unbounded contact problems by means of quadratic programming. J. Optim. Theory Appl.20, 171–189 (1976)
Eckhardt, U.: Pseudo-complementary algorithms for mathematical programming. In: Numerical Methods for Non-Linear Optimization. F. Lootsma (ed), pp. 301–312. London, New York: Academic Press 1972
Eckhardt, U.: Quadratic programming by successive overrelaxation. KFA Jülich Research Report Jül-1064-MA, April 1974
Eckhardt, U.: Zur numerischen Behandlung inkorrekt gestellter Aufgaben. Computing17, 193–206 (1976)
Eckhardt, U.: Semidefinite lineare Komplementärprobleme. Habilitationsschrift RWTH Aachen 1978. Special KFA Jülich Research Report Jül-Spez-6, April 1978
Fischer, F. D.: Zur Lösung des Kontaktproblems elastischer Körper mit ausgedehnter Kontaktfläche durch quadratische Programmierung. Computing13, 353–384 (1974)
Fletcher, R.: A FORTRAN subroutine for general quadratic programming. AERE Harwell Report AERE-R 6370, June 1970
Gorenflo, R., Kovetz, Y.: Solution of an Abel-type integral equation in the presence of noise by quadratic programming. Numer. Math.8, 392–406 (1966)
Kalker, J. J.: A survey of the mechanics of contact between solid bodies. Z. Angew. Math. Mech.57, T 3-T 17 (1977)
Knopp, K.: Theorie und Anwendung der unendlichen Reihen. Vierte Auflage. Die Grundlehren der mathematischen Wissenschaften Band II. Berlin, Heidelberg: Springer-Verlag 1947
Lemke, C. E.: On complementary pivot theory. In: Mathematics of the Decision Sciences, Part I. Lectures in Applied Mathematics. G. B. Dantzig and A. F. Veinott (eds.), Vol 11, pp. 95–114. Providence, Rhode Island: American Mathematical Society 1968