Semi-confined blast loading: experiments and simulations of internal detonations

Martin Kristoffersen, Folco Casadei, Valsamos Georgios, Martin Larcher, K. O. Hauge, Arianna Minoretti, Tore Børvik

Tóm tắt

AbstractFar-field blast loading has been studied extensively for decades. Close-in, confined, and semi-confined detonations less so, partly because it is difficult to obtain good experimental data. The increase in computational power in recent years has made it possible to conduct studies of this kind numerically, but the results of such simulations ultimately depend on experimental validation and verification. This work thus aims at using reliable experiments to validate and verify numerical models developed to represent blast loading in general. Test rigs consisting of massive steel cylinders with pressure sensors were used to measure the pressure profiles of semi-confined detonations with different charge sizes. The experimental data set was then used to assess numerical models appropriate for simulating blast loading. In general, the numerical results were in excellent agreement with the experimental data, in both qualitative and quantitative terms. These results may in turn be used to analyse structures exposed to internal blast loads, which constitutes the next phase of this research project.

Từ khóa


Tài liệu tham khảo

European Union: Directive (EU) 2022/2557 on the resilience of critical entities. Off. J. Eur. Union L333, 164 (2022). http://data.europa.eu/eli/dir/2022/2557/oj

Conrath, E.J., Krauthammer, T., Marchand, K.A., Mlakar, P.F.: Structural Design for Physical Security: State of the Practice. American Society of Civil Engineers, New York (1999). https://doi.org/10.1061/9780784415498

Esparza, E.D.: Blast measurements and equivalency for spherical charges at small scaled distances. Int. J. Impact Eng. 4(1), 23–40 (1986). https://doi.org/10.1016/0734-743X(86)90025-4

Friedlander, F.G.: The diffraction of sound pulses I: diffraction by a semi-infinite plane. Proc. R. Soc. A: Math. Phys. Eng. Sci. 186(1006), 322–344 (1946). https://doi.org/10.1098/rspa.1946.0046

Krauthammer, T.: Modern Protective Structures. CRC Press, Boca Raton (2008)

Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. Technical report, Defence Technical Information Center, Ballsitic Research Laboratory, Aberdeen Proving Ground, MD (1984)

Conventional Weapons Effects Program. Vicksburg: Department of the Army. Waterways Experiment Station, Corps of Engineers (1993)

Langenderfer, M., Williams, K., Douglas, A., Rutter, B., Johnson, C.E.: An evaluation of measured and predicted air blast parameters from partially confined blast waves. Shock Waves 31, 175–192 (2021). https://doi.org/10.1007/s00193-021-00993-0

Rezaei, A., Salimi Jazi, M., Karami, G.: Computational modeling of human head under blast in confined and open spaces: primary blast injury. Int. J. Numer. Methods Biomed. Eng. 30(1), 69–82 (2014). https://doi.org/10.1002/cnm.2590

Valsamos, G., Casadei, F., Solomos, G., Larcher, M.: Risk assessment of blast events in a transport infrastructure by fluid–structure interaction analysis. Saf. Sci. 118, 887–897 (2019). https://doi.org/10.1016/j.ssci.2019.06.014

Sauvan, P.E., Sochet, I., Trélat, S.: Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22, 253–264 (2012). https://doi.org/10.1007/s00193-012-0363-1

Kristoffersen, M., Hauge, K.O., Minoretti, A., Børvik, T.: Experimental and numerical studies of tubular concrete structures subjected to blast loading. Eng. Struct. 233, 111543 (2021). https://doi.org/10.1016/j.engstruct.2020.111543

Bratland, M., Bjerketvedt, D., Vaagsaether, K.: Structural response analysis of explosions in hydrogen–air mixtures in tunnel-like geometries. Eng. Struct. 231, 111844 (2021). https://doi.org/10.1016/j.engstruct.2020.111844

Julien, B., Sochet, I., Vaillant, T.: Impact of the volume of rooms on shock wave propagation within a multi-chamber system. Shock Waves 26, 87–108 (2016). https://doi.org/10.1007/s00193-015-0603-2

Chan, P.C., Klein, H.H.: A study of blast effects inside an enclosure. J. Fluids Eng. 116(3), 450–455 (1994). https://doi.org/10.1115/1.2910297

Dragos, J., Wu, C., Oehlers, D.J.: Simplification of fully confined blasts for structural response analysis. Eng. Struct. 56, 312–326 (2013). https://doi.org/10.1016/j.engstruct.2013.05.018

Edri, I.E., Grisaro, H.Y., Yankelevsky, D.Z.: TNT equivalency in an internal explosion event. J. Hazard. Mater. 374, 248–257 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.043

Remennikov, A.M., Rose, T.A.: Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83(27), 2197–2205 (2005). https://doi.org/10.1016/j.compstruc.2005.04.003

Caçoilo, A., Teixeira-Dias, F., Mourão, R., Belkassem, B., Vantomme, J., Lecompte, D.: Blast wave propagation in survival shelters: experimental analysis and numerical modelling. Shock Waves 28, 1169–1183 (2018). https://doi.org/10.1007/s00193-018-0858-5

Dennis, A.A., Pannell, J.J., Smyl, D.J., Rigby, S.E.: Prediction of blast loading in an internal environment using artificial neural networks. Int. J. Protect. Struct. 12(3), 287–314 (2021). https://doi.org/10.1177/2041419620970570

Dennis, A.A., Rigby, S.E.: The direction-encoded neural network: a machine learning approach to rapidly predict blast loading in obstructed environments. Int. J. Protect. Struct. (2023). https://doi.org/10.1177/20414196231177364

Rushton, N., Schleyer, G.K., Clayton, A.M., Thompson, S.: Internal explosive loading of steel pipes. Thin-Walled Struct. 46(7), 870–877 (2008). https://doi.org/10.1016/j.tws.2008.01.027

Shi, Y., Wang, N., Cui, J., Li, C., Zhang, X.: Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions. Process Saf. Environ. Prot. 165, 266–277 (2022). https://doi.org/10.1016/j.psep.2022.07.018

Needham, C., Brisby, J., Ortley, D.: Blast wave modification by detonator placement. Shock Waves 30, 615–627 (2020). https://doi.org/10.1007/s00193-020-00958-9

Kristoffersen, M., Hauge, K.O.: Pressure measurements from internal/confined blast loading using C-4 charges. Mendeley Data V1 (2023). https://doi.org/10.17632/zv7y78twd9.1https://data.mendeley.com/datasets/zv7y78twd9/1

EUROPLEXUS User’s Manual, on-line version. http://europlexus.jrc.ec.europa.eu

Cast3m Software. http://www-cast3m.cea.fr/

Jones, H., Miller, A.: The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 194(1039), 480–507 (1948). https://doi.org/10.1098/rspa.1948.0093

Wilkins, M., Squier, B., Halperin, B.: The equation of state of PBX 9404 and LX 04-01. Technical Report no. UCRL-7797, Lawrence Radiation Laboratory, USA (1964)

Lee, E., Hornig, H., Kury, J.: Adiabatic expansion of high explosive detonation products. Technical report, Univ. of California Radiation Lab. at Livermore, Livermore, CA, USA (1968)

Rigby, S.E., Fuller, B., Tyas, A.: Validation of near-field blast loading in LS-DYNA. Proc. ICPS5 2018, 5th International Conference on Protective Structures, Poznan, Poland, August 20-24 (2018)

Alia, A., Souli, M.: High explosive simulation using multi-material formulations. Appl. Therm. Eng. 26, 1032–1042 (2006). https://doi.org/10.1016/j.applthermaleng.2005.10.018

Young, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics. Academic Press, New York (1982)

Dobratz, B.M., Crawford, P.C.: LLNL explosives handbook—properties of chemical explosives and explosive simulants. Technical Report UCRL 52997, Lawrence Livermore National Laboratory, University of California, CA, USA (1985). https://doi.org/10.2172/6530310

Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation, (2006). Livermore Software Technology Corporation. https://www.dynasupport.com/manuals/additional/ls-dyna-theory-manual-2005-beta

Harten, A., Lax, P.D., Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002

Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

Kristoffersen, M., Minoretti, A., Børvik, T.: On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections. Eng. Fail. Anal. 103, 462–480 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.074

Kristoffersen, M., Hauge, K.O., Valsamos, G., Børvik, T.: Blast loading of concrete pipes using spherical centrically placed C-4 charges. Eur. Phys. J. Web Conf. 183, 01057 (2018). https://doi.org/10.1051/epjconf/201818301057

Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D.E., Houas, L.: Shock wave impacts on deforming panel, an application of fluid–structure interaction. Shock Waves 14, 103–110 (2005). https://doi.org/10.1007/s00193-005-0246-9

Antoniou, A., Børvik, T., Kristoffersen, M.: Evaluation of automatic versus material test-based calibrations of concrete models for ballistic impact simulations. Int. J. Protect. Struct. (2023). https://doi.org/10.1177/20414196231164431