Semi-confined blast loading: experiments and simulations of internal detonations
Tóm tắt
Từ khóa
Tài liệu tham khảo
European Union: Directive (EU) 2022/2557 on the resilience of critical entities. Off. J. Eur. Union L333, 164 (2022). http://data.europa.eu/eli/dir/2022/2557/oj
Conrath, E.J., Krauthammer, T., Marchand, K.A., Mlakar, P.F.: Structural Design for Physical Security: State of the Practice. American Society of Civil Engineers, New York (1999). https://doi.org/10.1061/9780784415498
Esparza, E.D.: Blast measurements and equivalency for spherical charges at small scaled distances. Int. J. Impact Eng. 4(1), 23–40 (1986). https://doi.org/10.1016/0734-743X(86)90025-4
Friedlander, F.G.: The diffraction of sound pulses I: diffraction by a semi-infinite plane. Proc. R. Soc. A: Math. Phys. Eng. Sci. 186(1006), 322–344 (1946). https://doi.org/10.1098/rspa.1946.0046
Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. Technical report, Defence Technical Information Center, Ballsitic Research Laboratory, Aberdeen Proving Ground, MD (1984)
Conventional Weapons Effects Program. Vicksburg: Department of the Army. Waterways Experiment Station, Corps of Engineers (1993)
Langenderfer, M., Williams, K., Douglas, A., Rutter, B., Johnson, C.E.: An evaluation of measured and predicted air blast parameters from partially confined blast waves. Shock Waves 31, 175–192 (2021). https://doi.org/10.1007/s00193-021-00993-0
Rezaei, A., Salimi Jazi, M., Karami, G.: Computational modeling of human head under blast in confined and open spaces: primary blast injury. Int. J. Numer. Methods Biomed. Eng. 30(1), 69–82 (2014). https://doi.org/10.1002/cnm.2590
Valsamos, G., Casadei, F., Solomos, G., Larcher, M.: Risk assessment of blast events in a transport infrastructure by fluid–structure interaction analysis. Saf. Sci. 118, 887–897 (2019). https://doi.org/10.1016/j.ssci.2019.06.014
Sauvan, P.E., Sochet, I., Trélat, S.: Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22, 253–264 (2012). https://doi.org/10.1007/s00193-012-0363-1
Kristoffersen, M., Hauge, K.O., Minoretti, A., Børvik, T.: Experimental and numerical studies of tubular concrete structures subjected to blast loading. Eng. Struct. 233, 111543 (2021). https://doi.org/10.1016/j.engstruct.2020.111543
Bratland, M., Bjerketvedt, D., Vaagsaether, K.: Structural response analysis of explosions in hydrogen–air mixtures in tunnel-like geometries. Eng. Struct. 231, 111844 (2021). https://doi.org/10.1016/j.engstruct.2020.111844
Julien, B., Sochet, I., Vaillant, T.: Impact of the volume of rooms on shock wave propagation within a multi-chamber system. Shock Waves 26, 87–108 (2016). https://doi.org/10.1007/s00193-015-0603-2
Chan, P.C., Klein, H.H.: A study of blast effects inside an enclosure. J. Fluids Eng. 116(3), 450–455 (1994). https://doi.org/10.1115/1.2910297
Dragos, J., Wu, C., Oehlers, D.J.: Simplification of fully confined blasts for structural response analysis. Eng. Struct. 56, 312–326 (2013). https://doi.org/10.1016/j.engstruct.2013.05.018
Edri, I.E., Grisaro, H.Y., Yankelevsky, D.Z.: TNT equivalency in an internal explosion event. J. Hazard. Mater. 374, 248–257 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.043
Remennikov, A.M., Rose, T.A.: Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83(27), 2197–2205 (2005). https://doi.org/10.1016/j.compstruc.2005.04.003
Caçoilo, A., Teixeira-Dias, F., Mourão, R., Belkassem, B., Vantomme, J., Lecompte, D.: Blast wave propagation in survival shelters: experimental analysis and numerical modelling. Shock Waves 28, 1169–1183 (2018). https://doi.org/10.1007/s00193-018-0858-5
Dennis, A.A., Pannell, J.J., Smyl, D.J., Rigby, S.E.: Prediction of blast loading in an internal environment using artificial neural networks. Int. J. Protect. Struct. 12(3), 287–314 (2021). https://doi.org/10.1177/2041419620970570
Dennis, A.A., Rigby, S.E.: The direction-encoded neural network: a machine learning approach to rapidly predict blast loading in obstructed environments. Int. J. Protect. Struct. (2023). https://doi.org/10.1177/20414196231177364
Rushton, N., Schleyer, G.K., Clayton, A.M., Thompson, S.: Internal explosive loading of steel pipes. Thin-Walled Struct. 46(7), 870–877 (2008). https://doi.org/10.1016/j.tws.2008.01.027
Shi, Y., Wang, N., Cui, J., Li, C., Zhang, X.: Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions. Process Saf. Environ. Prot. 165, 266–277 (2022). https://doi.org/10.1016/j.psep.2022.07.018
Needham, C., Brisby, J., Ortley, D.: Blast wave modification by detonator placement. Shock Waves 30, 615–627 (2020). https://doi.org/10.1007/s00193-020-00958-9
Kristoffersen, M., Hauge, K.O.: Pressure measurements from internal/confined blast loading using C-4 charges. Mendeley Data V1 (2023). https://doi.org/10.17632/zv7y78twd9.1https://data.mendeley.com/datasets/zv7y78twd9/1
EUROPLEXUS User’s Manual, on-line version. http://europlexus.jrc.ec.europa.eu
Cast3m Software. http://www-cast3m.cea.fr/
Jones, H., Miller, A.: The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 194(1039), 480–507 (1948). https://doi.org/10.1098/rspa.1948.0093
Wilkins, M., Squier, B., Halperin, B.: The equation of state of PBX 9404 and LX 04-01. Technical Report no. UCRL-7797, Lawrence Radiation Laboratory, USA (1964)
Lee, E., Hornig, H., Kury, J.: Adiabatic expansion of high explosive detonation products. Technical report, Univ. of California Radiation Lab. at Livermore, Livermore, CA, USA (1968)
Rigby, S.E., Fuller, B., Tyas, A.: Validation of near-field blast loading in LS-DYNA. Proc. ICPS5 2018, 5th International Conference on Protective Structures, Poznan, Poland, August 20-24 (2018)
Alia, A., Souli, M.: High explosive simulation using multi-material formulations. Appl. Therm. Eng. 26, 1032–1042 (2006). https://doi.org/10.1016/j.applthermaleng.2005.10.018
Young, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics. Academic Press, New York (1982)
Dobratz, B.M., Crawford, P.C.: LLNL explosives handbook—properties of chemical explosives and explosive simulants. Technical Report UCRL 52997, Lawrence Livermore National Laboratory, University of California, CA, USA (1985). https://doi.org/10.2172/6530310
Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation, (2006). Livermore Software Technology Corporation. https://www.dynasupport.com/manuals/additional/ls-dyna-theory-manual-2005-beta
Harten, A., Lax, P.D., Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002
Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629
Kristoffersen, M., Minoretti, A., Børvik, T.: On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections. Eng. Fail. Anal. 103, 462–480 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.074
Kristoffersen, M., Hauge, K.O., Valsamos, G., Børvik, T.: Blast loading of concrete pipes using spherical centrically placed C-4 charges. Eur. Phys. J. Web Conf. 183, 01057 (2018). https://doi.org/10.1051/epjconf/201818301057
Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D.E., Houas, L.: Shock wave impacts on deforming panel, an application of fluid–structure interaction. Shock Waves 14, 103–110 (2005). https://doi.org/10.1007/s00193-005-0246-9