Semi-classical analysis of the Laplace operator with Robin boundary conditions

Bulletin of Mathematical Sciences - Tập 2 - Trang 281-319 - 2012
Rupert L. Frank1, Leander Geisinger1
1Department of Mathematics, Princeton University, Princeton, USA

Tóm tắt

We prove a two-term asymptotic expansion of eigenvalue sums of the Laplacian on a bounded domain with Neumann, or more generally, Robin boundary conditions. We formulate and prove the asymptotics in terms of semi-classical analysis. In this reformulation it is natural to allow the function describing the boundary conditions to depend on the semi-classical parameter and we identify and analyze three different regimes for this dependence.

Tài liệu tham khảo

Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) Birman, M.Š., Solomjak, M.Z.: Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. American Mathematical Society Translations, Series 2, vol. 114. American Mathematical Society, Providence (1980) Branson, T.P., Gilkey, P.B.: The asymptotics of the Laplacian on a manifold with boundary. Commun. Partial Differ. Equ. 15(2), 245–272 (1990) Frank, R.L., Geisinger, L.: Two-term spectral asymptotics of the Dirichlet Laplacian on a bounded domain. In: Exner, P. (ed.) Mathematical Results in Quantum Physics: Proceedings of the Qmath11 Conference, pp. 138–147. World Scientific Publishing Company, Singapore (2011) Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. Preprint (2011). arXiv:1105.5181 Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 4. Springer, Berlin (1985) Ivrii, V.J.: The second term of the spectral asymptotics for the Laplace-Beltrami operator on manifolds with boundary. Funktsional. Anal. i Prilozhen. 14(2), 25–34 (1980) Ivrii, V.J.: The second term of the spectral asymptotics for the Laplace-Beltrami operator on manifolds with boundary and for elliptic operators acting in vector bundles. Soviet Math. Dokl. 20(1), 1300–1302 (1980) Ivrii, V.J.: Microlocal analysis and precise spectral asymptotics. In: Springer Monographs in Mathematics. Springer, Berlin (1998) Kröger, P.: Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal. 106(2), 353–357 (1992) McKean, H.P. Jr., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1(1), 43–69 (1967) Pleijel, Å.: A study of certain Green’s functions with applications in the theory of vibrating membranes. Ark. Mat. 2, 553–569 (1954) Solovej, J.P., Spitzer, W.L.: A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2-3), 383–420 (2003) Safarov, Y., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. In: Translations of Mathematical Monographs, vol. 155. American Mathematical Society, Providence (1997) Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)