Semi-automatic active contour-based segmentation to remove eyes, meninges, and skull from MRI

Springer Science and Business Media LLC - Tập 36 Số 3 - Trang 369-377 - 2020
José Micael Delgado Barbosa1, Tassia Luiza Gonçalves Magalhães Nunes1, Tâmara Luiza Gonçalves Magalhães Nunes1, Abner Rodrigues1, Edgard Morya1
1Neuroengineering Master Program, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba/RN, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen K, Shen J, Scalzo F. Skull stripping using confidence segmentation convolution neural network. Lect Notes Comput Sci. 2018. https://doi.org/10.1007/978-3-030-03801-4_2.

De Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A comparison of MR based segmentation methods for measuring brain atrophy progression. NeuroImage. 2011;54:760–8. https://doi.org/10.1016/j.neuroimage.2010.09.060.

Dey R, Hong Y. CompNet: complementary segmentation network for brain MRI extraction. Springer: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2018.

Duay V.; Bresson, X.; Castro J.S.; Pollo C.; Cuadra M.B.; Thiran JP. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):980-8. Ali.

Essadike A, Ouabida E, Bouzid A. Brain tumor segmentation with Vander Lugt correlator based active contour. Comput Methods Prog Biomed. 2018;160:103–17. https://doi.org/10.1016/j.cmpb.2018.04.004.

Fischl B. FreeSurfer. FreeSurfer Neuroimage. 2012;62:774–81. https://doi.org/10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

Franke K, Gaser C. Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s disease. GeroPsych. 2012. https://doi.org/10.1024/1662-9647/a000074.

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., amp; Frackowiak, R. S. J. Spatial registration and normalization of images. Human Brain Mapping, 1995. https://doi.org/10.1002/hbm.460030303

Haralick RM, Shanmugam K, Dinstein I. Texture features for image classification. IEEE Trans Systems Man Cybem. 1973;SMC-3:610–21. https://doi.org/10.1109/TSMC.1973.4309314.

Iglesias JE, Cheng-Yi L, Thompson PM, Zhuowen T. Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods. IEEE Transactions on Medical Imaging. 2011;30:1617–34. https://doi.org/10.1109/tmi.2011.2138152.

Ikram MA, Vrooman HA, Vernooij MW, van der Lijn F, Hofman A, van der Lugt A, et al. Brain tissue volumes in the general elderly population. Neurobiol Aging. 2008;29:882–90. https://doi.org/10.1016/j.neurobiolaging.2006.12.012.

Kalavathi P, Prasath VBS. Methods on skull stripping of MRI head scan images—a review. J Digit Imaging. 2015;29:365–79. https://doi.org/10.1007/s10278-015-9847-8.

Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1998;1:321–31. https://doi.org/10.1007/bf00133570.

Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9. https://doi.org/10.1016/j.neuroimage.2016.01.024.

Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp. 2009;30:1310–27. https://doi.org/10.1002/hbm.20599.

LaMontagne PJ, Benzinger TLS, Morris JC, Keefe S, Hornbeck R, Xiong C, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2018. https://doi.org/10.1101/2019.12.13.19014902.

Peng SL, Chen CF, Liu HL, Lui CC, Huang YJ, Lee TH, et al. Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed. 2012;26:443–50. https://doi.org/10.1002/nbm.2882.

Price K. Anything you can do, I can do better (no you can’t). Computer Vision Graphics and Image Processing. 1998;36:387–91. https://doi.org/10.1016/0734-189X(86)90083-6.

Roy S, Maji P. An accurate and robust skull stripping method for 3-D magnetic resonance brain images. Magn Reson Imaging. 2018;54:46–57. https://doi.org/10.1016/j.mri.2018.07.014.

Roy S, Butman JA, Pham DL. Robust skull stripping using multiple MR image contrasts insensitive to pathology. NeuroImage. 2017;146:132–47. https://doi.org/10.1016/j.neuroimage.2016.11.017.

Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image tissue classification using a partial volume model. NeuroImage. 2001;13:856–76. https://doi.org/10.1006/nimg.2000.0730.

Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55. https://doi.org/10.1002/hbm.10062.

Wang J, Kong J, Lu Y, Qi M, Zhang B. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput Med Imaging Graph. 2008;32:685–98. https://doi.org/10.1016/j.compmedimag.2008.08.004.

Zaidi H, Ruest T, Schoenahl F, & Montandon M.-L. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. NeuroImage, 2006. https://doi.org/10.1016/j.neuroimage.2006.05.031

Zhang W-L, Wang X-Z. Feature Extraction and Classification for Human Brain CT Images. 2007 International Conference on Machine Learning and Cybernetics. 2007. https://doi.org/10.1109/icmlc.2007.4370318.