Semi-automated simultaneous predictor selection for regression-SARIMA models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) 2nd International Symposium on Information Theory, pp. 267–281. Budapest Akademiai Kiado (1973)
Beale, E.M.L.: Note on procedures for variable selection in multiple regression. Technometrics 12(4), 909–914 (1970)
Bertsimas, D., King, A.: OR forum-an algorithmic approach to linear regression. Oper. Res. 64(1), 2–16 (2016)
Bertsimas, D., King, A., Muzumder, R.: Best subset selection via a modern optimisation lens. Ann. Stat. 44, 813–852 (2016)
Breiman, L., Friedman, J.H.: Predicting multivariate responses in a multiple linear regression. J. R. Stat. Soc. B 59(1), 3–54 (1997)
Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, Berlin (2002)
Cochrane, D., Orcutt, G.H.: Application of least squares regression to relationships containing auto-correlated error terms. J. Am. Stat. Assoc. 44(245), 32–61 (1949)
Duong, L., Cohn, T., Bird, S., Cook, P.: Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers, pp. 845–850), Association for Computational Linguistics, Beijing (2015). https://doi.org/10.3115/v1/P15-2139, https://www.aclweb.org/anthology/P15-2139
Gurobi Optimization, L.: Gurobi optimizer reference manual (2019). http://www.gurobi.com
Hastie, T., Tibshirani, R.R.J. Tibshirani: Extended comparisons of best subset selection, forward stepwise selection, and the lasso (2017). arXiv Preprint arXiv:1707.08692
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction Springer Series in Statistics, 2nd edn. Springer, New York (2008)
Hazimeh, H., Mazumder, R.: Fast best subset selection: coordinate descent and local combinatorial optimization algorithms (2018). arXiv preprint arXiv:1803.01454
Hocking, R.R.: A biometrics invited paper: the analysis and selection of variables in linear regression. Biometrics 32(1), 1–49 (1976)
Hoerl, E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008)
Izenman, A.J.: Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5, 248–264 (1975)
Jordan, M.I., Mitchel, T.M.: Machine learning: trends, prespectives and prospects. Science 349(6245), 255–260 (2015)
Katal, A., Wazid, M., Goudar, R.H.: Big data: Issues, challenges, tools and good practices. In: Parashar, M., Zomaya, A., Chen, J., Cao, J.N., Bouvry, P., Prasad, S. (eds.) 2013 Sixth International Conference on Contemporary Computing (IC3). Jaypee Institute of Information Technology, IEEE (2013)
Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison of solvers for convex MINLP. Optim. Eng. 20, 397–455 (2019)
Lowther, A.P.: Multivariate response predictor selection methods: with applications to telecommunications time series data. PhD thesis, Department of Mathematics and Statistics, Lancaster University, UK (2019). https://eprints.lancs.ac.uk/id/eprint/141405/1/2019lowtherphd.pdf
Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: sparse linear modeling when the SNR is low (2017). arXiv preprint arXiv:1708.03288
Miller, A.J.: Subset Selections in Regression. Monographs on Statistics and Applied Probability, vol. 95, 2nd edn. Chapman and Hall CRC, Boca Raton (2002)
Proost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 52–59 (2013)
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2019). https://www.R-project.org/
Rao, C.R., Toutenburg, H.: Linear Models: Least Squares and Alternatives, 2nd edn. Springer, Berlin (1999)
Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: A Research Tool, 2nd edn. Springer, Berlin (1998)
Reinsel, G.C., Velu, R.: Multivariate Reduced-Rank Regression: Theory and Applications. Lecture Notes in Statistics, vol. 136. Springer, Berlin (2013)
Similia, T., Tikka, J.: Input selection and shrinkage in multiresponse linear regression. Comput. Stat. Data Anal. 52, 406–422 (2007)
Simon, N., Friedman, J., Hastie, T.: A blockwise descent algorithm for group-penalized multiresponse and multinomial regression (2013). arXiv Preprint arXiv:1311.6529v1
Soltysik, R.C., Yarnold, P.R.: Two-group multiODA: a mixed-integer linear programming solution with bounded M. Optim. Data Anal. 1, 30–37 (2010)
Srivastava, M.S., Solanky, T.K.S.: Predicting multivariate response in linear regression model. Commun. Stat. Simul. Comput. 32(2), 389–409 (2003)
Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 36, 111–147 (1974)
Stroud, J.R., Müller, P., Sansó, B.: Dynamic models for spatiotemporal data. J. R. Stat. Soc. B 63(4), 673–689 (2001)
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58(1), 267–288 (1996)
Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005). https://doi.org/10.1198/004017005000000139
Xie, W., Deng, X.: The CCP selector: scalable algorithms for sparse ridge regression from chance-constrained programming (2018). arXiv preprint arXiv:1806.03756
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68(1), 49–67 (2006)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005)
Zou, H., Hastie, T.: elasticnet: elastic-net for sparse estimation and sparse PCA. R package version 1.1.1 (2018). https://CRAN.R-project.org/package=elasticnet